【摘要】引入課題:f(x)=x2,求f(0),f(-1),f(1),f(-2),f(2),及f(-x),并畫出它的圖象。解:f(-2)=(-2)2=4f(2)=4f(0)=0,f(-1)=(-1)2=1f(1)=1f(-x)=(-x)2=x2f(x)=x3,求f(0),f(-1),f(1)f(-2),f
2024-11-26 19:31
【摘要】奇偶性班級(jí):__________姓名:__________設(shè)計(jì)人__________日期__________課前預(yù)習(xí)·預(yù)習(xí)案【溫馨寄語】希望是堅(jiān)韌的拐杖,忍耐是旅行袋,帶上他們,你可以登上永恒之旅,走遍全世界?!緦W(xué)習(xí)目標(biāo)】1.利用函數(shù)的奇偶性解決一些簡單的問題,2.掌握奇偶性的判斷方法.3.理解函數(shù)的奇
2024-12-08 22:40
【摘要】第一篇:高中數(shù)學(xué):《函數(shù)的奇偶性》教案(新人教B必修1) 函數(shù)的奇偶性學(xué)案 【預(yù)習(xí)要點(diǎn)及要求】; ;; ;?!局R(shí)再現(xiàn)】 : 2中心對稱圖形:【概念探究】 1、畫出函數(shù)f(x)=x,與g...
2024-10-14 05:48
【摘要】函數(shù)的奇偶性與單調(diào)性(首先定義域必須關(guān)于原點(diǎn)對稱)(1)為奇函數(shù);為偶函數(shù);(2)奇函數(shù)在原點(diǎn)有定義(3)任一個(gè)定義域關(guān)于原點(diǎn)對稱的函數(shù)一定可以表示成一個(gè)奇函數(shù)和一個(gè)偶函數(shù)之和???即(奇)(偶).?(注:①先確定定義域;②單調(diào)性證明一定要用定義)?(1)定義:區(qū)間上任意兩個(gè)值,若時(shí)有,稱為上增函數(shù),若時(shí)有,稱為上
2025-05-16 01:41
【摘要】復(fù)合函數(shù)的單調(diào)性和奇偶性 1、復(fù)合函數(shù)的概念 如果是的函數(shù),又是的函數(shù),即,,那么關(guān)于的函數(shù)叫做函數(shù)和的復(fù)合函數(shù),其中是中間變量,自變量為函數(shù)值為?!±纾汉瘮?shù)是由和復(fù)合而成。2、復(fù)合函數(shù)單調(diào)性復(fù)合函數(shù)單調(diào)性判定方法:定理:設(shè)函數(shù)u=g(x)在區(qū)間M上有意義,函數(shù)y=f(u)在區(qū)間N上有意義,且當(dāng)X∈M時(shí),u∈N。增函數(shù)增函數(shù)增函數(shù)增函
2025-04-04 04:22
【摘要】函數(shù)的奇偶性、映射一、選擇題:(每小題6分,共36分)。1.由下列命題:①偶函數(shù)的圖像一定和y軸相交;②奇函數(shù)圖像一定經(jīng)過原點(diǎn);③既是奇函數(shù)又是偶函數(shù)的函數(shù)一定是????0fxxR??;④偶函數(shù)的圖像關(guān)于y軸對稱,奇函數(shù)的圖像關(guān)于原點(diǎn)對稱。其中正確的是
2024-12-03 12:23
【摘要】函數(shù)的奇偶性(1)一、選擇題:y=f(x)的定義域關(guān)于坐標(biāo)原點(diǎn)對稱,并且有f(-x)+f(x)=0,則該函數(shù)是()y=f(x)的定義域關(guān)于坐標(biāo)原點(diǎn)對稱,并且有f(-x)-f(x)=0,則該函數(shù)是()f(x)=0,x?[-2,2
2024-11-28 00:24
【摘要】X學(xué)習(xí)目標(biāo):、余弦函數(shù)的奇偶性、單調(diào)性的意義;、單調(diào)性;重點(diǎn):正、余弦函數(shù)的性質(zhì)難點(diǎn):正、余弦函數(shù)的性質(zhì).復(fù)習(xí):正弦、余弦函數(shù)的圖象和性質(zhì)x6?yo-?-12?3
2024-11-09 06:03
【摘要】正弦、余弦函數(shù)的性質(zhì)X(奇偶性、單調(diào)性)正弦、余弦函數(shù)的圖象x6?yo-?-12?3?4?5?-2?-3?-4?1?y=sinx(x?R)x6?o-?-12?3?4?5?-2?-3?-4?1?yy=cosx(x?R)
2024-11-10 03:01
【摘要】2020年高中數(shù)學(xué)函數(shù)的單調(diào)性學(xué)案新人教B版必修1一、三維目標(biāo):知識(shí)與技能:(1)理解函數(shù)單調(diào)性的定義、明確增函數(shù)、減函數(shù)的圖象特征;(2)能利用函數(shù)圖象劃分函數(shù)的單調(diào)區(qū)間,并能利用定義進(jìn)行證明。(3)理解函數(shù)的最值是在整個(gè)定義域上研究函數(shù),體會(huì)求函數(shù)最值是函數(shù)單調(diào)性的應(yīng)用之一。過程與方法:由一元一次函
2024-11-19 22:43
【摘要】【創(chuàng)新設(shè)計(jì)】2021-2021學(xué)年高中數(shù)學(xué)函數(shù)的奇偶性活頁練習(xí)新人教B版必修1雙基達(dá)標(biāo)限時(shí)20分鐘1.函數(shù)f(x)=x3+3x的奇偶性為().A.奇函數(shù)B.偶函數(shù)C.既是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)解析定義域?yàn)镽,且f(-x)=-x3-3x=-f(x)
2024-12-08 20:23
【摘要】 函數(shù)的單調(diào)性和奇偶性一、目標(biāo)認(rèn)知學(xué)習(xí)目標(biāo): 、奇偶性定義; 、證明函數(shù)在給定區(qū)間上的單調(diào)性; ; .重點(diǎn)、難點(diǎn): ??; .二、知識(shí)要點(diǎn)梳理 (1)增函數(shù)、減函數(shù)的概念 一般地,設(shè)函數(shù)f(x)的定義域?yàn)锳,區(qū)間 如果對于M內(nèi)的任意兩個(gè)自變量的值x1、x2,當(dāng)x1<x2時(shí),都
2025-08-05 02:38
【摘要】1.已知函數(shù)對任意,總有,且當(dāng)(1)求證在R上是減函數(shù)(2)求在[-3,3]上的最大值和最小值2.函數(shù)對任意,都有,并且當(dāng)(1)求證在R上是增函數(shù)(2)若3.4.(1)求(2)求證在定義域上是增函數(shù)(3)如果求滿足不等式的x的取值范圍(4)解不等式
2025-03-25 02:32
【摘要】函數(shù)的性質(zhì)的運(yùn)用1.若函數(shù)是奇函數(shù),則下列坐標(biāo)表示的點(diǎn)一定在函數(shù)圖象上的是()A.B.C.D.2.已知函數(shù)是奇函數(shù),則的值為()A.B.C.D.3.已知f(x)是偶函數(shù),g(x)是奇函數(shù),若,則f(x)的解析式為_______.4.已知函數(shù)f(x)為偶函數(shù),且其圖象與x軸有四個(gè)交點(diǎn),
2025-03-24 12:16
【摘要】函數(shù)單調(diào)性和奇偶性專題1.知識(shí)點(diǎn)精講:一、單調(diào)性:一、函數(shù)單調(diào)性的定義及性質(zhì)(1)定義對于給定區(qū)間上的函數(shù),如果對任意,當(dāng),都有,那么就稱在區(qū)間上是增函數(shù);當(dāng),都有,那么就稱在區(qū)間上是減函數(shù).與之相等價(jià)的定義:⑴,〔或都有〕則說在這個(gè)區(qū)間上是增函數(shù)(或減函數(shù))。其幾何意義為:增(減)函數(shù)圖象上的任意兩點(diǎn)連線的斜率都大于(或小于)0。(2)函數(shù)的單調(diào)區(qū)間