【摘要】 2021屆三省三校“3+3+3”高考備考診斷性聯(lián)考卷(二)數(shù)學(xué)(理)試題 一、單選題 1.已知集合,,則集合的子集個數(shù)為() A. B. C.8 D.32 【答案】C 【分析】先...
2025-04-05 05:04
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》復(fù)習(xí)2導(dǎo)學(xué)案蘇教版選修1-1復(fù)習(xí)要求:單調(diào)性與導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;會求函數(shù)的單調(diào)區(qū)間.;會用導(dǎo)數(shù)求函數(shù)的極大值、極小值;會求閉區(qū)間上函數(shù)的最大值、最小值.課前預(yù)習(xí):1.知識要點回顧:(1)函數(shù)的導(dǎo)數(shù)與單調(diào)性的關(guān)系:(2)函
2024-12-04 23:46
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用—極大值與極小值(2)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1、進(jìn)一步鞏固應(yīng)用導(dǎo)數(shù)求函數(shù)極值的方法2、應(yīng)用極值解決求參數(shù)的有關(guān)問題。重點:應(yīng)用極求參數(shù)及參數(shù)范圍問題課前預(yù)學(xué):1、函數(shù))0(??xxeyx的極小值為
2024-12-05 06:44
【摘要】導(dǎo)數(shù)在實際生活中的應(yīng)用之一——幾何應(yīng)用例1?在邊長為60cm的正方形鐵皮的四角切去邊長相等的正方形,再把它的邊沿虛線折起,做成一個無蓋的方底鐵皮箱。箱底邊長為多少時,箱子容積最大?最大容積是多少?例2?某種圓柱形的飲料罐的容積一定時,如何確定它的高與底半徑,使得所用材料最省?Rh練習(xí)(1)求內(nèi)接于半徑為
2024-10-19 16:23
【摘要】舜耕中學(xué)高一數(shù)學(xué)選修1—1導(dǎo)學(xué)案(教師版)編號20等級:周次上課時間月日周課型新授課主備人胡安濤使用人課題教學(xué)目標(biāo),求函數(shù)單調(diào)區(qū)間,證明單調(diào)性。教學(xué)重點會熟練用求導(dǎo),求函數(shù)單調(diào)區(qū)間,會從導(dǎo)數(shù)的角度解釋增減及增減快慢的情況教學(xué)難點證
2024-12-08 01:49
【摘要】PQoxyy=f(x)割線切線T)斜率無限趨限趨近點P處切,時0無限趨限當(dāng)(PQkx?))()(xxfxxfkPQ?????回顧設(shè)物體作直線運動所經(jīng)過的路程為s=f(t)。以t0為起始時刻,物體在?t時間內(nèi)的平均速度為
2024-11-17 20:20
【摘要】選修1-2平均變化率、瞬時速度與導(dǎo)數(shù)一、選擇題1.在函數(shù)變化率的定義中,自變量的增量Δx滿足()A.Δx<0B.Δx>0C.Δx=0D.Δx≠0[答案]D[解析]自變量的增量Δx可正、可負(fù),但不可為0.2.函數(shù)在某一點的導(dǎo)數(shù)是()A.在該點的函數(shù)的增量與自變量的增量的
2024-11-19 05:04
【摘要】第三章導(dǎo)數(shù)及其應(yīng)用第7課時函數(shù)的和、差、積、商的導(dǎo)數(shù)(2)教學(xué)目標(biāo):、和(或差)的導(dǎo)數(shù)法則,學(xué)會用法則求復(fù)雜形式的函數(shù)的導(dǎo)數(shù);.教學(xué)重點:靈活應(yīng)用函數(shù)的和、差、積、商的求導(dǎo)法則教學(xué)難點:函數(shù)的積、商的求導(dǎo)法則的綜合應(yīng)用教學(xué)過程:Ⅰ.問題情境Ⅱ.建構(gòu)數(shù)學(xué)
2024-11-19 17:30
【摘要】導(dǎo)數(shù)在實際生活中的應(yīng)用新課引入:導(dǎo)數(shù)在實際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實際生活中的某些最值問題..(面積和體積等的最值)(利潤方面最值)(功和功率等最值)例1:在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無
2024-11-17 17:10
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》平均變化率導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):通過對一些實例的直觀感知,構(gòu)建平均變化率的概念,并初步運用和加深理解利用平均變化率來刻畫變量變化得快與慢的原理;通過從實際生活背景中構(gòu)建數(shù)學(xué)模型來引入平均變化率,領(lǐng)會以直代曲和數(shù)形結(jié)合的思想,培養(yǎng)學(xué)生的抽象思維與歸納綜合的能力,提升學(xué)生的數(shù)
【摘要】1.(文)正三棱柱體積為V,則其表面積最小時,底面邊長為( )A. B. C. D.2[答案] C[解析] 設(shè)正三棱柱底面邊長為a,高為h,則體積V=a2h,∴h=,表面積S=a2+3ah=a2+,由S′=a-=0,得a=,故選C.(理)在內(nèi)接于半徑為R的半圓的矩形中,周長最大的矩形的邊長為( ) D.以上都不對[答案]
2025-07-24 15:24
【摘要】導(dǎo)數(shù)的實際應(yīng)用一、基礎(chǔ)過關(guān)1.煉油廠某分廠將原油精煉為汽油,需對原油進(jìn)行冷卻和加熱,如果第x小時,原油溫度(單位:℃)為f(x)=13x3-x2+8(0≤x≤5),那么,原油溫度的瞬時變化率的最小值是()A.8C.-1D.-82.設(shè)底為等邊三角形的直三棱柱的體積為
2024-12-03 11:30
【摘要】(1)1、實際問題中的應(yīng)用.在日常生活、生產(chǎn)和科研中,常常會遇到求函數(shù)的最大(小)值的問題.建立目標(biāo)函數(shù),然后利用導(dǎo)數(shù)的方法求最值是求解這類問題常見的解題思路.在建立目標(biāo)函數(shù)時,一定要注意確定函數(shù)的定義域.在實際問題中,有時會遇到函數(shù)在區(qū)間內(nèi)只有一個點使的情形,如果函數(shù)在這個點
2024-11-18 08:56
【摘要】 第1頁共9頁 建筑施工組織設(shè)計在實際工程中的應(yīng)用 摘要。本文以某火電廠二期工程施工組織設(shè)計為例,指出存 在的問題,介紹了施工組織設(shè)計在工程建設(shè)中的目的、重要性、 作用、分類、具體內(nèi)容等,結(jié)...
2025-08-07 22:59
【摘要】第三章導(dǎo)數(shù)及其應(yīng)用,第一頁,編輯于星期六:點三十七分。,3.3導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用3.3.1函數(shù)的單調(diào)性與導(dǎo)數(shù),第二頁,編輯于星期六:點三十七分。,,梳理知識夯實基礎(chǔ),自主學(xué)習(xí)導(dǎo)航,第三頁,編輯于星...
2024-10-22 19:01