【摘要】,第三章空間向量與立體幾何,3.1空間向量及其運算空間向量運算的坐標表示,第一頁,編輯于星期六:點三十八分。,第二頁,編輯于星期六:點三十八分。,自,主,預,習,探,新,知,第三頁,編輯于星期六:點三...
2024-10-22 19:06
【摘要】,第三章空間向量與立體幾何,3.1空間向量及其運算空間向量的數(shù)量積運算,第一頁,編輯于星期六:點三十八分。,第二頁,編輯于星期六:點三十八分。,自,主,預,習,探,新,知,第三頁,編輯于星期六:點三十...
2024-10-22 19:05
【摘要】立體幾何初步復習(二)1、如圖,在底面為平行四邊形的四棱錐PABCD?中,點E是PD的中點.求證://PB平面AEC;2、如圖,在正方體ABCD-A1B1C1D1中,求證:面AB1D1∥面BDC1
2024-12-04 23:44
【摘要】數(shù)量積運算一、兩個向量的夾角兩條相交直線的夾角是指這兩條直線所成的銳角或直角,即取值范圍是(0°,90°],而向量的夾角可以是鈍角,其取值范圍是[0°,180°]二、兩個向量的數(shù)量積注:①兩個向量的數(shù)量積是數(shù)量,而不是向量.②規(guī)定:零向量與任意向量的數(shù)量積等于零.a
2024-11-18 12:14
【摘要】,第三章空間向量與立體幾何,3.2立體幾何中的向量方法第3課時空間向量與空間角,第一頁,編輯于星期六:點三十八分。,第二頁,編輯于星期六:點三十八分。,自,主,預,習,探,新,知,第三頁,編輯于星期六...
2024-10-22 19:07
【摘要】必修2立體幾何初步復習(一)一、點、直線、平面的位置關(guān)系(一)知識框圖,整體認識(二)整合知識,發(fā)展思維(1)空間點、線、面間的位置關(guān)系:公理1——判定直線是否在平面內(nèi)的依據(jù);①文字表述②圖形公理2——提供確定
2024-11-19 19:35
【摘要】數(shù)乘運算上一節(jié)課,我們把平面向量的有關(guān)概念及加減運算擴展到了空間.平面向量空間向量加法減法運算加法:三角形法則或平行四邊形法則減法:三角形法則運算律加法交換律abba???加法結(jié)合律:()()ab
【摘要】坐標表示1.空間向量的基本定理:2.平面向量的坐標表示及運算律:(,,)pxiyjijxy??(1)若分別是軸上同方向的兩個單位向量(,)pxy則的坐標為1212(,),(,)aaabbb??(2)若11221122(,)
【摘要】北師大版高中數(shù)學選修2-1第二章《空間向量與立體幾何》扶風縣法門高中姚連省第一課時平面向量知識復習一、教學目標:復習平面向量的基礎(chǔ)知識,為學習空間向量作準備二、教學重點:平面向量的基礎(chǔ)知識。教學難點:運用向量知識解決具體問題三、教學方法:探究歸納,講練結(jié)合四、教學過程(一)、基本概念
2024-12-08 09:07
【摘要】第二章檢測題A時間120分鐘,滿分150分。一、選擇題(本大題共10個小題,每小題5分,共50分,在每小題給出的四個選項中,只有一項是符合題目要求的)1.在空間中,已知動點P(x,y,z)滿足z=0,則動點P的軌跡是()A.平面B.直線C.不是平面,也不是直線D.
2024-12-03 00:16
【摘要】立體幾何中的向量方法——方向向量與法向量如圖,l為經(jīng)過已知點A且平行于非零向量a的直線,那么非零向量a叫做直線l的方向向量。l?A?Pa1.直線的方向向量直線l的向量式方程換句話說,直線上的非零向量叫做直線的方向向量APta?一、方向向量與法向量
2025-06-06 00:10
【摘要】1拋物線及其標準方程(一)2球在空中運動的軌跡是拋物線規(guī)律,那么拋物線它有怎樣的幾何特征呢?二次函數(shù)2(0)yaxbxca????又到底是一條怎樣的拋物線?拋物線及其標準方程(一)3復習回顧:我們知道,橢圓、雙曲線的有共同的幾何特征:都可
2024-11-17 12:02
【摘要】《曲線與方程》教學目標?理解并能運用曲線的方程、方程的曲線的概念,建立“數(shù)”與“形”的橋梁,培養(yǎng)學生數(shù)形結(jié)合的意識.?教學重點:求曲線的方程?教學難點:掌握用直接法、代入法、交軌法等求曲線方程的方法(1)、求第一、三象限里兩軸間夾角平分線的坐標滿足的關(guān)系第一、三象限角平分線??點的橫坐標與縱坐標相等
【摘要】數(shù)量積公式巧證垂直問題對于空間兩個非零向量a,b來說,如果它們的夾角??,ab,那么我們定義它們的數(shù)量積為cos??abab.特別地,當兩向量垂直時,0???abab.利用該結(jié)論,可以很好地解決立體幾何中線線垂直或線面垂直的問題.1.證明直線與直線垂直,可以轉(zhuǎn)化為證明這兩條直線上的非零向量的數(shù)量積為零.反之亦成立.
2024-11-20 00:26
【摘要】立體幾何初步復習(三)---------空間角(一)知識回顧,整體認識1.異面直線所成角;定義:范圍:圖形2.直線與平面所成角;定義:范圍:圖形3.二面角.定義:圖形求解步驟:作——證——指——求——答(二)應(yīng)用舉例,深化鞏固△AB
2024-11-19 23:24