【正文】
W e t600D ri l lP(D | B) = ?P(B ) = ? D ryBa d T e s t (B) 2 0 0D o n o t d ri l l0P(W|G) = 給定測試是 “Good”時有石油 “Wet”的概率 Conditional Probability 條件概率 ? 測試結(jié)果的概率 : P(G) = P(B) = ? 給定測試結(jié)果下的條件概率 : P(W | G) = P(D | G) = P(W | B) = P(D | B) = Actual State of Nature Wet (W) Dry (D) Total Seismic Good (G) 30 20 50 Result Bad (B) 10 40 50 Total 40 60 100 Conditional Probability 條件概率 Revising Probabilities 修正概率 Actual State of Nature W et ( W) Dr y ( D ) G oo d (G) P( G | W) = 0 . 75 P( G | D ) = 0 . 25 Ba d ( B) P( B | W) = 0 . 33 P( B | D ) = 0 . 67 P ri o r P(W ) = P( D) = Step 1—聯(lián)合概率( Joint Probabilities) 聯(lián)合概率( Joint Probabilities) Actual State of Nature W et ( W) Dr y ( D ) T o t a l S eis m ic G oo d (G) P( G W) = 0 . 3 P( G D ) = 0 . 2 P( G ) = Re s ult Ba d ( B) P( B W) = 0 . 1 P( B D ) = P(W ) = Revising Probabilities 修正概率 Actual State of Nature W et ( W) Dr y ( D ) S eis m ic G oo d (G) P(W | G ) = P( D | G ) = Re s ult Ba d ( B) P(W | B ) = P( D | B ) = Revising Probabilities 修正概率 Step 2—后驗概率( Posterior Probabilities) Bayes’ Theorem 貝葉斯定理 P ( W | G ) ? P ( W | G )P ( G ) ? P ( G | W ) P ( W )P ( G )Risk Attitude 風(fēng)險態(tài)度 對于下面的拋硬幣賭博,你愿意選擇哪一種呢? A: Heads: 贏 $200 Tails: 虧 $0 B: Heads: 贏 $300 Tails: 虧 $100 C: Heads: 贏 $200,000 Tails: 虧 $0 D: Heads: 贏 $300,000 Tails: 虧 $100,000 Risk Attitude 風(fēng)險態(tài)度 將貨幣價值轉(zhuǎn)化為反映決策者偏好的正確標(biāo)度的途徑稱為 貨幣效用函數(shù) ? 風(fēng)險回避者 (Risk Averse) 隨著貨幣數(shù)量的增加 , 函數(shù)的斜率遞減 , 稱為遞減的貨幣邊際效用 ? 風(fēng)險偏好者 ( Risk Seekers) 效用函數(shù)的斜率隨著貨幣數(shù)量的增加而增大 , 具有遞增的貨幣邊際效用 ? 風(fēng)險中性者( Riskneutral) 認(rèn)為錢的價值等同于其貨幣價值,貨幣效用簡單地與貨幣的數(shù)量呈直線關(guān)系 U ( M )M M MU ( M ) U ( M )( a ) Ri s k a ve rs e ( b ) Ri s k s e e ke r ( c ) Ri s k ne ut ra lUtility and Risk Attitude 效用與風(fēng)險態(tài)度 Fundamental Pr