【摘要】第一章勾股定理探索勾股定理(第1課時認識勾股定理)情境引入,理解并掌握直角三角形三邊之間的數(shù)量關(guān)系.(重點).(難點)學習目標如圖,這是一幅美麗的圖案,仔細觀察,你能發(fā)現(xiàn)這幅圖中的奧秘嗎?帶著疑問我們來一起探索吧.情境引入導入新課(圖中每一格代表一平方厘米)
2024-12-28 00:21
【摘要】第14章勾股定理14.2勾股定理的應用第2課時勾股定理在數(shù)學中的應用目標突破總結(jié)反思第14章勾股定理知識目標勾股定理的應用知識目標1.在理解勾股定理及其逆定理的基礎上,經(jīng)過觀察、分析、探究,能畫出長為無理數(shù)的線段.2.通過分析圖形、思考、討論,能夠?qū)⑴c直角三角形有關(guān)的數(shù)學問題
2025-06-12 12:08
【摘要】第2課時 勾股定理的逆定理的應用知識點1知識點2勾股定理逆定理的實際應用師傅測量一個等腰三角形工件的腰、底及底邊上的高,并按順序記錄下數(shù)據(jù),量完后,不小心與其他記錄的數(shù)據(jù)記混了,請你幫助這位師傅從下列數(shù)據(jù)中找出等腰三角形工件的數(shù)據(jù)(??B??),10,10,10,
2025-06-18 18:41
【摘要】第一章第2課時一、選擇題1.“a=1”是“直線x+y=0和直線x-ay=0互相垂直”的()A.充分而不必要條件B.必要而不充分條件C.充要條件D.既不充分也不必要條件[答案]C[解析]當a=1時,直線x-ay=0化為直線x-y=0,∴直線
2024-12-08 06:04
【摘要】◆知識導航◆典例導學◆反饋演練(◎第一階◎第二階◎第三階)
2025-06-13 13:51
【摘要】課堂反饋1.如圖42-1是由4個邊長為1的正方形構(gòu)成的“田字格”.只用沒有刻度的直尺在這個“田字格”中最多可以作出以格點為端點、長度為5的線段()A.2條B.5條C.7條D.8條圖42-1D2.如圖42-2,在四邊形ABCD
2025-06-18 00:19
2025-06-18 00:16
【摘要】勾股定理的逆定理第十七章勾股定理導入新課講授新課當堂練習課堂小結(jié)八年級數(shù)學下(RJ)教學課件第2課時勾股定理的逆定理的應用學習目標.(重點)題.(難點)導入新課問題前面的學習讓我們對勾股定理及其逆定理的
2025-06-18 18:34
2025-06-13 14:20
【摘要】第14章勾股定理勾股定理的應用第1課時勾股定理的應用1.勾股定理的變形:若直角三角形的兩直角邊分別為a、b,斜邊為c,則a2+b2=c2或a2=或b2=或a=或b=.2.
2025-06-19 17:54
【摘要】第一篇:《勾股定理》教學設計(第1課時) 一、內(nèi)容和內(nèi)容解析 勾股定理的探究、 勾股定理的內(nèi)容是:如果直角三角形的兩條直角邊長分別為a、b,斜邊長為c,那么 .,已知任意兩邊長,,到網(wǎng)格中...
2024-11-18 22:23
【摘要】第14章勾股定理勾股定理直角三角形三邊的關(guān)系第2課時勾股定理的驗證及其簡單應用拼圖法大多數(shù)是利用驗證勾股定理.利用定理,知道直角三角形任意兩條邊的長,可求出的長,并能利用它解決相關(guān)的簡單的實際問題.例如一根長為5米的木桿斜靠在墻上(如圖),桿底距墻的下沿的距離B
2025-06-16 21:12
【摘要】第十七章勾股定理學練考數(shù)學八年級下冊R勾股定理第2課時勾股定理的應用
2025-06-20 12:02
【摘要】第2課時垂徑定理(2)北師版九年級下冊復習導入回顧垂徑定理:垂直于弦的直徑平分這條弦,并且平分弦所對的弧.OMCDAB①CD為直徑②CD⊥AB③AM=BM??ACBC?④??ADBD?⑤可推出由
2025-03-12 13:04
【摘要】第18章勾股定理勾股定理知識點勾股定理的應用1.將13米長的梯子靠在一堵墻上,若梯子的底部離墻角5米,則梯子的頂部離墻角(B)A.11米B.12米C.13米D.14米2.如圖,在邊長為1個單位長度的正方形網(wǎng)格中,以網(wǎng)格線的交點為頂點構(gòu)成△A
2025-06-13 12:20