【摘要】排列組合常見題型及解題策略四川南溪縣第一中學校王信釧湯艷麗排列組合問題是高考的必考題,它聯(lián)系實際生動有趣,但題型多樣,思路靈活,不易掌握,實踐證明,掌握題型和解題方法,識別模式,熟練運用,是解決排列組合應用題的有效途徑;下面就談一談排列組合應用題的解題策略.一.可重復的排列求冪法:重復排列問題要區(qū)分兩類元素:一類可以重復,另一類不能重復,把不能重復的元素看作“客”,能重復的元
2025-01-14 00:49
【摘要】1排列組合常見題型及解題策略四川南溪縣第一中學校王信釧湯艷麗排列組合問題是高考的必考題,它聯(lián)系實際生動有趣,但題型多樣,思路靈活,不易掌握,實踐證明,掌握題型和解題方法,識別模式,熟練運用,是解決排列組合應用題的有效途徑;下面就談一談排列組合應用題的解題策略.一.可重復的排列求冪法:重復排列問題要區(qū)分兩類元素:一類可以重復,另一類不能重復
2025-01-06 05:38
【摘要】立體幾何重要定理:1)直線與平面垂直的判定定理:如果一條直線和一個平面內的兩條相交直線都垂直,那么這兩條直線垂直于這個平面.2)直線和平面平行性質定理:如果一條直線和一個平面平行,經過這條直線的平面和這個平面相交,那么這條直線和交線平行.3)平面平行判定定理:如果一個平面內有兩條
2024-12-17 02:37
【摘要】第一篇:立體幾何證明 1、(14分)如圖,在正方體ABCD-A1B1C1D1中,E、F為棱AD、AB的中點.(1)求證:EF∥平面CB1D1; (2)求證:平面CAA1C1⊥平面CB1D1. A...
2025-11-03 12:11
【摘要】立體幾何復習講義【基礎回扣】1.平面平面的基本性質:掌握三個公理及推論,會說明共點、共線、共面問題。(1)證明點共線的問題,一般轉化為證明這些點是某兩個平面的公共點(依據(jù):由點在線上,線在面內,推出點在面內),這樣可根據(jù)公理2證明這些點都在這兩個平面的公共直線上。(2)證明共點問題,一般是先證
2025-06-07 21:19
【摘要】一、基本概念1.空間向量:在空間內,我們把具有大小和方向的量叫做向量,用有向線段表示.2.向量的模:向量的大小叫向量的長度或模.記為|,特別地:?①規(guī)定長度為0的向量為零向量,記作;?②模為1的向量叫做單位向量;3.相等的向量:兩個模相等且方向相同的向量稱為相等的向量.4.負向量:兩個模相等且方向相反的向量是互為負向量.如的相反向量記為-.
2025-04-17 08:18
【摘要】1.[2007年普通高等學校統(tǒng)一考試(海南、寧夏卷)數(shù)學文科第8題,理科第8題]20 20 正視圖20 側視圖101020 俯視圖已知某個幾何體的三視圖如下,根據(jù)圖中標出的尺寸(單位:cm),可得這個幾何體的體積是( )A. B.C. D.2.[2008年普通高等學校招生全國統(tǒng)一考試(山東
2025-06-07 22:04
【摘要】平面的基本性質公理1:如果一條直線上的兩點在一個平面內,那么這條直線在此平面內(教師引導學生閱讀教材P42前幾行相關內容,并加以解析)符號表示為LA·αA∈LB∈L=LαA∈αB∈α公理1作用:判斷直線是否在平面內生活中,我們看到三腳架可以牢固地支撐照相機或測量用的平板儀等等……C·
2025-04-17 00:53
【摘要】一輪復習之立體幾何姓名一輪復習之立體幾何姓名1.已知三棱錐中,為等腰直角三角形,,設點為中點,點為中點,點為上一點,且.(1)證明:平面;(2)若,求直線與平面所成角的正弦值.
2025-07-24 12:16
【摘要】如何學好立體幾何立體幾何在歷年的高考中有兩到三道小題,必有一道大題。雖然分值比重不是特別大,但是起著舉足輕重的作用。下面就如何學好立體幾何談幾點建議。一立足課本,夯實基礎直線和平面這些內容,是立體幾何的基礎,學好這部分的一個捷徑就是認真學習定理的證明,尤其是一些很關鍵的定理的證明。例如:三垂線定理。定理的內容都很簡單,就是線與線,線與面,面與面之間的關系的闡述。但定理的
2025-09-25 17:14
【摘要】精品資源1.在平行六面體OABC---DEFG中(如圖),側面OABC和CBFG是單位正方形,面OCGD是菱形且∠COD=60°.設a是常數(shù)且0a1,P是EB上的點且分EB的比為2:1,Q在GE上,且分線段GE的比為a(1-a).(1)試用(2)當a為何值時,有最小值?解(1)所以平行六面體OABC---DEFG為
2025-04-17 07:36
【摘要】第一篇:立體幾何的證明方法 立體幾何的證明方法 1.線面平行的證明方法 2.兩線平行的證明方法 7、空間平行、垂直之間的轉化與聯(lián)系: 應用判定定理時,注意由“低維”到“高維”:“線線...
2025-11-06 05:58
【摘要】秭歸縣屈原高中張鴻斌專題立幾問題的向量解法高考復習建議傳統(tǒng)的立幾問題是用立幾的公理和定理通過從“形”到“式”的邏輯推理,解決線與線、線與面、面與面的位置關系以及幾何體的有關問題,常需作輔助線,但有時卻不易作出,而空間向量解立幾問題則體現(xiàn)了“數(shù)”與“形”的結合,通過向量的代數(shù)計算解決問題,無須添加輔助線。用空間向量解立幾問題
2025-10-31 12:27
【摘要】小學排列組合常見題型及解題策略一.可重復的排列求冪法:重復排列問題要區(qū)分兩類元素:一類可以重復,另一類不能重復,把不能重復的元素看作“客”,能重復的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關鍵是在正確判斷哪個底數(shù),哪個是指數(shù)【例1】(1)有4名學生報名參加數(shù)學、物理、化學競賽,每人限報一科,有多少種不同的報名方法?(2)有4名學生參加爭
2025-03-25 02:36
【摘要】立體幾何中的軌跡問題高考數(shù)學有一類學科內的綜合題,它們的新穎性、綜合性,值得我們重視,在知識網絡交匯點處設計試題是高考命題改革的一個方向,以空間問題為為背景的軌跡問題作為解析幾何與立體幾何的交匯點,由于知識點多,數(shù)學思想和方法考查充分,求解比較困難。通常要求學生有較強的空間想象能力,以及能夠把空間問題轉化到平面上,再結合解析幾何方法求解,以下精選幾個問題來對這一問題進行探討,旨在探索題型規(guī)律
2025-09-25 16:57