【摘要】第四章 線性方程組消元法教學(xué)目的:1、掌握線性方程組的和等變換,矩陣的初等變換等概念。理解線性方程組的和等變換是同解變換,以及線性方程組的初等變換可用增廣矩陣的相應(yīng)的行初等變換代替。2、熟練地掌握用消元發(fā)解線性方程組,以及判斷線性方程組有沒(méi)有解和解的個(gè)數(shù)。設(shè)方程組:a11x1+a12x2+…+a1nxn=b1;a
2025-04-17 13:05
【摘要】線性方程組的解法討論畢業(yè)論文目錄1引言 12文獻(xiàn)綜述 1國(guó)內(nèi)外研究現(xiàn)狀 1國(guó)內(nèi)外研究現(xiàn)狀評(píng)價(jià) 2提出問(wèn)題 23線性方程組的概念及解的基礎(chǔ)理論 2齊次線性方程組 3非齊次線性方程組 64線性方程組的解法 9高斯消元法 9用克拉默(Cramer)法則解線性方程組 10LU分解法 11逆矩
2025-06-28 21:06
【摘要】一、矩陣的初等變換定義對(duì)矩陣進(jìn)行下列三種變換,稱為矩陣的初等變換:(1)交換矩陣的任意兩行;(2)矩陣的任意一行乘以非零數(shù)k;(3)矩陣的任意一行乘以k加到另外一行。、、行階梯形矩陣,特點(diǎn)是可以畫(huà)一條階梯線,線的左下方元素全為零;行簡(jiǎn)化階梯形矩陣,其非零行的首非零元為1,且非零元所在列的其它元素都為零。二
2025-06-07 16:29
【摘要】第三章向量題型歸納及思路提示
2025-01-06 22:10
【摘要】線代框架之二次型1.定義:二次型1211(,,,)nnTnijijijfxxxxAxaxx??????(其中ijjiaa?,即A為對(duì)稱矩陣,12(,,,)Tnxxxx?)。只含平方項(xiàng)的二次型稱為二次型的標(biāo)準(zhǔn)形(此時(shí)二次型的矩陣為對(duì)角矩陣)12(,,,)TnfxxxxA
【摘要】線性方程組解題方法技巧與題型歸納題型一線性方程組解的基本概念【例題1】如果α1、α2是方程組的兩個(gè)不同的解向量,則a的取值如何?解:因?yàn)棣?、α2是方程組的兩個(gè)不同的解向量,故方程組有無(wú)窮多解,r(A)=r(Ab)<3,對(duì)增廣矩陣進(jìn)行初等行變換:易見(jiàn)僅當(dāng)a=-2時(shí),r(A)=r(Ab)=2<3,故知a=-2?!纠}2】設(shè)A是秩為3的5×4
2025-08-07 11:18
【摘要】第二章矩陣題型歸納及思路提示
【摘要】§矩陣的秩列行和中任取矩陣,在是設(shè)kkAnmA?個(gè)元素位于這些行列交叉處的2),,(knkmk??階行列式,組成的中的相對(duì)位置不變保持在kA)(.階子式的稱為kA階子式)(矩陣的定義k1階子式是一個(gè)數(shù)。注:k一、秩的概念與性質(zhì)的秩,為的子式的最高階數(shù),稱中不為矩陣AA0).(Ar記作.0規(guī)定零
2025-07-25 13:22
【摘要】常系數(shù)線性方程組基解矩陣的計(jì)算董治軍(巢湖學(xué)院數(shù)學(xué)系,安徽巢湖238000)摘要:微分方程組在工程技術(shù)中的應(yīng)用時(shí)非常廣泛的,不少問(wèn)題都?xì)w結(jié)于它的求解問(wèn)題,基解矩陣的存在和具體尋求是不同的兩回事,一般齊次線性微分方程組的基解矩陣是無(wú)法通過(guò)積分得到的,但當(dāng)系數(shù)矩陣是常數(shù)矩陣時(shí),可以通過(guò)方法求出基解矩陣,這時(shí)可利用矩陣指數(shù)t,給出基解矩陣的一般形式,本文針對(duì)應(yīng)用最廣泛的常系數(shù)
2025-06-23 07:32
【摘要】2022/8/28華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院謝驪玲第3章線性方程組AX=B的數(shù)值解法華南師范大學(xué)數(shù)學(xué)科學(xué)學(xué)院謝驪玲2022/8/28引言?在自然科學(xué)和工程技術(shù)中很多問(wèn)題的解決常常歸結(jié)為解線性代數(shù)方程組。例如電學(xué)中的網(wǎng)絡(luò)問(wèn)題,船體數(shù)學(xué)放樣中建立三次樣條函數(shù)問(wèn)題,用最小二乘法求實(shí)驗(yàn)數(shù)據(jù)的曲線擬合問(wèn)題,解非線性方程組問(wèn)
2025-08-05 11:07
【摘要】試驗(yàn)3直接法求解線性方程組實(shí)驗(yàn)內(nèi)容?Guass列主元消去法?Doolittle分解?追趕法試驗(yàn)3解線性方程組的直接法/*DirectMethodforSolvingLinearSystems*/求解bxA???§1高斯消元法/*GaussianElimi
2024-10-19 01:12
【摘要】???????????????????mnmnmmnnnnbxaxaxabxaxaxabxaxaxa???????????????22112222212111212111形如)(個(gè)方程的線性方程組的個(gè)未知數(shù)稱為mxxxnn?,,21一.線性方程組,aaaaaaaaa
2024-10-16 18:56
【摘要】第2章線性代數(shù)方程組第2章線性代數(shù)方程組11112211211222221122()nnnnnnnnnnxxxxxxxxx???????????????????????????????線性代數(shù)方程組
2024-09-28 16:20
【摘要】幾何與代數(shù)主講:王小六線性代數(shù)的相關(guān)資料:1《IntroductiontoLinearAlgebra》,GilbertStrang著,麻省理工開(kāi)放課程鏈接:2《Linearalgebraanditsapplications》/線性代數(shù)及其應(yīng)用/[美]DavidC.Lay著3
2025-04-30 05:22
【摘要】//解線性方程組#include#include#include//----------------------------------------------全局變量定義區(qū)constintNumber=15; //方程最大個(gè)數(shù)doublea[Number][Number],b[Number],copy
2025-07-26 10:39