【摘要】實(shí)驗(yàn)七快速傅里葉變換實(shí)驗(yàn)2011010541 機(jī)14林志杭一、實(shí)驗(yàn)?zāi)康?.加深對(duì)幾個(gè)特殊概念的理解:“采樣”……“混疊”;“窗函數(shù)”(截?cái)啵靶孤?;“非整周期截取”……“柵欄”?.加深理解如何才能避免“混疊”,減少“泄漏”,防止“柵欄”的方法和措施以及估計(jì)這些因素對(duì)頻譜的影響。3.對(duì)利用通用微型計(jì)算機(jī)及相應(yīng)的FFT軟件,實(shí)現(xiàn)頻譜分析有一個(gè)初步的了解
2025-04-16 23:22
【摘要】第三章傅里葉變換◆信號(hào)的正交分解◆傅里葉級(jí)數(shù)◆周期信號(hào)的頻譜◆傅里葉變換◆抽樣信號(hào)與抽樣定理將以上兩圖簡(jiǎn)化:引言傅里葉級(jí)數(shù)的發(fā)展史:1807年,法國(guó)數(shù)學(xué)家傅里葉提出“任何”周期信號(hào)都可以利用正弦級(jí)數(shù)來表示。1829年,狄義赫利指出,周期信號(hào)只有滿足了若
2025-01-19 02:00
【摘要】第七章傅里葉變換在自然科學(xué)和工程技術(shù)中為了把較復(fù)雜的運(yùn)算轉(zhuǎn)化為較簡(jiǎn)單的運(yùn)算,人們常采用變換的方法來達(dá)到目的.例如在初等數(shù)學(xué)中,數(shù)量的乘積和商可以通過對(duì)數(shù)變換化為較簡(jiǎn)單的加法和減法運(yùn)算.在工程數(shù)學(xué)里積分變換能夠?qū)⒎治鲞\(yùn)算(如微分、積分)轉(zhuǎn)化為代數(shù)運(yùn)算,正是積分變換的這一特性,使得它在微分方程、偏微分方程的求解中成為重要的方
2025-01-19 11:11
【摘要】§拉普拉斯變換與傅里葉變換的關(guān)系?主要內(nèi)容?重點(diǎn):從函數(shù)拉氏變換求傅氏變換?難點(diǎn):判斷函數(shù)傅氏變換的存在?引言?從函數(shù)拉氏變換求傅氏變換??演變?yōu)槔献儞Q作傅氏變換對(duì)其乘以一個(gè)衰減因子可積條件不滿足絕對(duì)是針對(duì)時(shí)我們?cè)谝隼献儞Q,,,,
2024-10-18 15:23
【摘要】第五章傅里葉變換應(yīng)用與通信系統(tǒng)例題?例題1:由系統(tǒng)函數(shù)求沖激響應(yīng)?例題2:求系統(tǒng)函數(shù)及零狀態(tài)響應(yīng)?例題3:正弦信號(hào)作為輸入的穩(wěn)態(tài)響應(yīng)?例題4:希爾伯特變換?例題5:抽樣,低通濾波器,調(diào)幅例5-1題圖(a)是理想高通濾波器的幅頻特性和相頻特性,求此理想高通濾波器的沖激響應(yīng)。因?yàn)樗?/span>
2025-06-26 16:09
【摘要】傅里葉變換的本質(zhì)傅里葉變換的公式為可以把傅里葉變換也成另外一種形式:可以看出,傅里葉變換的本質(zhì)是內(nèi)積,三角函數(shù)是完備的正交函數(shù)集,不同頻率的三角函數(shù)的之間的內(nèi)積為0,只有頻率相等的三角函數(shù)做內(nèi)積時(shí),才不為0。下面從公式解釋下傅里葉變換的意義因?yàn)楦道锶~變換的本質(zhì)是內(nèi)積,所以f(t)和求內(nèi)積的時(shí)候,只有f(t)中頻率為的分量才會(huì)有內(nèi)積的結(jié)果,其余分量的內(nèi)積為0??梢岳?/span>
2025-06-16 01:12
【摘要】東北石油大學(xué)本科生畢業(yè)設(shè)計(jì)(論文)摘要采用高級(jí)C語(yǔ)言實(shí)現(xiàn)FFT算法。利用DSP芯片特有的哈佛結(jié)構(gòu)和專門的FFT指令。在DSP上能夠更快速的實(shí)現(xiàn)FFT。從而促進(jìn)DSP芯片的發(fā)展,同時(shí)加快基于DSP數(shù)字信號(hào)處理的速度。通過對(duì)FFT的算法進(jìn)行研究,從基礎(chǔ)深入研究和學(xué)習(xí),掌握FFT算法的關(guān)鍵。研究DSP芯片如何加快蝶形計(jì)算以及如何有效地碼位倒置的輸出顛倒過來。熟悉旋轉(zhuǎn)因子的生成。通過學(xué)習(xí)D
2024-11-07 22:06
【摘要】1積分變換Fourier變換Recall:周期函數(shù)在一定條件下可以展開為Fourier級(jí)數(shù);但全直線上的非周期函數(shù)不能用Fourier表示;引進(jìn)類似于Fourier級(jí)數(shù)的Fourier積分(周期趨于無窮時(shí)的極限形式)2§1Fourier積分公式Recall:在工程計(jì)算中,無論
2025-05-06 03:25
【摘要】DSP實(shí)驗(yàn)進(jìn)度匯報(bào)組員:汪張揚(yáng)、任艷波、陳雪松、謝聰、沈旭任務(wù)分配:汪張揚(yáng)由于考G,上周沒有任務(wù),沈旭負(fù)責(zé)自制二值圖像的處理,陳雪松和謝聰負(fù)責(zé)其他圖片的處理,任艷波負(fù)責(zé)搜集圖像壓縮評(píng)價(jià)的相關(guān)材料以下為簡(jiǎn)要概括:讀入圖像進(jìn)行傅里葉變換和壓縮原始程序:a=imread('d:\');b=figure
2025-06-26 16:24
【摘要】信號(hào)和系統(tǒng)的兩種分析方法:(1)模擬信號(hào)和系統(tǒng)信號(hào)用連續(xù)變量時(shí)間t的函數(shù)表示;系統(tǒng)則用微分方程描述;信號(hào)和系統(tǒng)的頻域分析方法:拉普拉斯變換和傅里葉變換;(2)時(shí)域離散信號(hào)和系統(tǒng)信號(hào)用序列表示;系統(tǒng)用差分方程描述;頻域分析的方法是:Z
2025-07-25 21:26
【摘要】第二章z變換和DTFT本章主要內(nèi)容:1、z變換的定義及收斂域2、z變換的反變換3、z變換的基本性質(zhì)和定理4、離散信號(hào)的DTFT5、z變換與DTFT的關(guān)系6、離散系統(tǒng)的z變換法描述§z變換的定義及收斂域信號(hào)和系統(tǒng)的分析方法有兩種:——時(shí)域分析方法
2025-05-07 18:15
【摘要】第4章圖像變換?傅里葉變換?離散余弦變換?K-L變換?小波變換2022/2/122第4章圖像變換為了有效和快速地對(duì)圖像進(jìn)行處理和分析,常常需要將原定義在圖像空間的圖像以某種形式轉(zhuǎn)換到其他空間,并且利用圖像在這個(gè)空間的特有性質(zhì)進(jìn)行處理,
2025-01-15 06:26
【摘要】題目:函數(shù)傅里葉變換在物理中的應(yīng)用姓名董昊煜鄭意南劉書琬成夢(mèng)左晏寧國(guó)志浩指導(dǎo)教師蘇德礦教授年級(jí)大一年級(jí)第一部分函數(shù)傅里葉變換在電路通信中的應(yīng)用一、概述:傅里葉變換是指對(duì)某一區(qū)域內(nèi)(或周期函數(shù))分段光滑的函數(shù)用正、余弦函數(shù)的線性組合來近似原函數(shù)。當(dāng)組合的函數(shù)項(xiàng)n→∞時(shí),便得到一組形如n=1∞an
2025-06-18 20:22
【摘要】1二、線性(疊加性)為常數(shù)iniiiniiiiiaFatfaFTniFtfFT???????11)(])([),,2,1()()]([???)(tf2?2?????12t求:)(tf的傅里葉變換傅里葉變換的基本性質(zhì)2)]()([)]
2025-07-25 16:10
【摘要】傅里葉變換在物理學(xué)、數(shù)論、組合數(shù)學(xué)、信號(hào)處理、概率論、統(tǒng)計(jì)學(xué)、密碼學(xué)、聲學(xué)、光學(xué)、海洋學(xué)、結(jié)構(gòu)動(dòng)力學(xué)等領(lǐng)域都有著廣泛的應(yīng)用(例如在信號(hào)處理中,傅里葉變換的典型用途是將信號(hào)分解成幅值分量和頻率分量)。傅里葉變換能將滿足一定條件的某個(gè)函數(shù)表示成三角函數(shù)(正弦和/或余弦函數(shù))或者它們的積分的線性組合。在不同的研究領(lǐng)域,傅里葉變換具有多種不同的變體形式,如連續(xù)傅里葉變換和離散傅里葉變換。傅里
2025-04-04 02:06