【正文】
stantial research has been undertaken in relation to these mechanisms and other problems. This has particularly been the case over the last 20 years or so, where the objective has been to identify causes, consequences and develop remediation strategies. This has improved understanding of longterm behaviour of reinforced concrete and resulted in the development of techniques to increase deterioration resistance.At present, the most mon approach is to act after a problem has been identified, known as reactive maintenance. This may not be the most economic solution since, in many cases, maintenance is more costly than preventative treatments. However, owners are often reluctant to pay for preventative treatments before deterioration is apparent. Early application of treatments may not be the optimal solution in the long run. Integrated deterioration and performance prediction modeling is essential to proactively plan and prioritise inspection, testing and maintenance. This bees increasingly important as infrastructure ages and justification for maintenance funding bees increasingly critical. Performance assessment can be achieved through surveys, testing and formal calculations, ideally based on site data that represent, as accurately as possible, the state of the structure. By integrating predictive deterioration models with assessment tools and performance criteria (at element, structure or group level) it bees possible to base the maintenance regime on timedependent performance profiles. This is particularly relevant in the context of wholewife costing procedures.Substantial research has been undertaken in relation to these mechanisms and other problems. This has particularly been the case over the last 20 years or so, where the objective has been to identify causes, consequences and develop remediation strategies. This has improved understanding of longterm behaviour of reinforced concrete and resulted in the development of techniques to increase deterioration resistance.At present, the most mon approach is to act after a problem has been identified, known as reactive maintenance. This may not be the most economic solution since, in many cases, maintenance is more costly than preventative treatments. However, owners are often reluctant to pay for preventative treatments before deterioration is apparent. Early application of treatments may not be the opti。樁身在地面以下深度Z處截面上的彎矩MZ與水平力的計算,見下面兩表:樁身彎矩Mg計算(單位:kN*m)Z Z*aa*hAmBmHo*Am/aMoBmMg水平壓應(yīng)力計算(單位:kN/m2) ZZ*aAXBxaHoZAx/ba2MoZB/b00 000234驗算最大彎矩值(Z=)處的截面強(qiáng)度,該處內(nèi)力值為:M=*mN=+=該樁的配筋情況為2020,Ag=(㎝2),=%。首先計算每根樁承受的垂直荷載Nmax(包括活載) N=+1/2(225)= kN灌注樁每延米自重 q=15=水平荷載:T=(不考慮風(fēng)力、地震力)彎矩M=(1065+)+23= kN*m按已有的地質(zhì)資料,地面以下大約1到6米為圓礫層,再以下均為混合花崗巖層,由于上層很薄且與花崗巖比較差不很大,所以均按花崗巖計算,并且預(yù)留兩米作為補(bǔ)充。同時墩柱配筋滿足規(guī)范要求,箍筋和駕立筋可按要求配置。=20號混凝土,按圓型鋼筋混凝土截面桿件強(qiáng)度計算公式,查表可得: T= S=壓應(yīng)力:=247。由于l/d=21/2=7,偏心矩的增大系數(shù):=。 雙柱反力橫向分布系數(shù)計算:1) 汽—20:,2) 掛—100:,3) 人群荷載:(1)最大最小垂直反力計算,見下表荷載組合垂直反力計算表(雙孔)編號荷載情況最大垂直反力最小垂直反力 B B1汽202掛1003人群荷載 (3) 最大彎矩時計算(單孔)荷載組合最大彎矩計算編號荷載情況柱頂反力水平力對柱頂中心彎矩1汽20單孔2掛100——3人群單孔——表中水平力由兩墩柱均分 作用于墩柱頂?shù)耐饬Γ?)垂直力:Nmax=+=;(2)彎矩:Mmax=++=。恒載計算:(1)上部構(gòu)造恒載,;(2)蓋梁自重,;(3)墩柱自重,21=。查“橋規(guī)”得到[]=11000kPa,[]=185000kPa. 彎矩作用時配筋計算各截面所需鋼筋量,見下表。恒載加活載作用下各截面的內(nèi)力(1)彎矩計算:截面位子見圖示。第五章 下部結(jié)構(gòu)的計算 概述,下部結(jié)構(gòu)的設(shè)計主要包括蓋梁、橋墩、樁柱以及橋臺等構(gòu)件的尺寸設(shè)計,荷載計算和驗算,在這里我只做蓋梁和橋墩、樁柱的設(shè)計,由于時間的關(guān)系橋臺設(shè)計,我沒有做。對于鋼墊板2: 公式右邊=(+2240)101= ∴ Nc=右邊,符合要求。 圖 8如圖16a所示,在錨固端設(shè)置兩塊厚20mm的鋼墊板,即在N7N10的四根鋼束錨下設(shè)置200962mm的墊板1;在N1N6的六根鋼束下設(shè)置350766mm的墊板2。因此就法向應(yīng)力而言,表明在主梁混凝土達(dá)到90%強(qiáng)度時可以開始張拉鋼束。 表24示出了σhx的計算過程,混凝土主應(yīng)力計算結(jié)果見表25 通過各控制截面的混凝土主應(yīng)力計算,其結(jié)果如下: maxσzl(MPa) 組合Ⅰ 組合Ⅲ (由變化點截面控制) maxσza(MPa)(由跨中截面控制) 在使用荷載作用下混凝土主應(yīng)力應(yīng)符合下列規(guī)定:荷載組合Ⅰ: σzl≤=(見表10,以下同) σza≤=(3)驗算鋼束中的最大應(yīng)力 計算公式: 式中: σy—有效預(yù)應(yīng)力; MgMg2—第一、第二期恒載產(chǎn)生的梁內(nèi)彎矩; Mp—活載產(chǎn)生的梁內(nèi)彎矩,分(汽+人)和掛100兩種情況; eji、eoi—分別為鋼束重心到截面凈軸和換軸的距離,即: eji=yjxai,eoi= yoxai 計算1號梁跨中截面鋼束應(yīng)力,見表26。(2)混凝土主應(yīng)力驗算 此項驗算包括混凝土主拉應(yīng)力和主壓應(yīng)力,對前者驗算主要為了保證主梁斜截面具有與正截面同等的抗裂安全度,而驗算后者是保證混凝土在沿主壓應(yīng)力方向破壞時也具有足夠的安全度。 計算公式為: c=式中:m—斜截面頂端正截面處的剪跨比,m=M/Qh0,當(dāng)m,取 m= Q—通過斜截面頂端正截面內(nèi)由使用荷載產(chǎn)生的最大剪力; M—相應(yīng)于上述最大剪力時的彎矩; h0—通過斜截面受壓區(qū)頂端截面上的有效高度,自受拉縱向主鋼筋的合力點至受壓邊緣的距離(以cm計) 上述的Q、M、h0近似取變化點截面的最大剪力、最大彎矩和截面有效高度,則: ,取m=,故: c== 若選用Φ820cm的雙肢箍筋,則箍筋的總截面的總截面積為 Ak=2=箍筋間距sk=20cm,箍筋抗拉設(shè)計強(qiáng)度Rgk=240MPa,箍筋配筋率: 主梁斜截面抗剪強(qiáng)度應(yīng)按下式計算: Qj≤Qhk+Qw式中:Qj—經(jīng)組合后通過斜截面頂端正截面內(nèi)的最大剪力(KN),對于變化點截面Qj=; Qhk—斜截面內(nèi)混凝土與箍筋共同的抗剪能力(KN),按下式計算: Qw—與斜截面相交的彎起鋼束的抗剪能力(KN),按下式計算: Qw=∑Aywsinα式中:Ryw—預(yù)應(yīng)力彎起鋼束的抗拉設(shè)計強(qiáng)度(MPa),取Ryw=1280MPa; Ayw—預(yù)應(yīng)力彎起鋼束的截面面積(cm2); α—與斜截面相交的彎起鋼束與構(gòu)件縱軸線的交角(如圖15所示),sinα值見表12 , p=100μ=∴ KN ∑Aywsinα=[2(++)+ +++]= ∴ Qw=1280= Qhk+Qw=+=故Qj=Qhk+Qw,說明主梁腹板寬度改變處的斜截面抗剪強(qiáng)度滿足要求,同時也表明上述箍筋的配置是合理的。(MPa)(MPa)(MPa)Wc(cm3)Mg2(Nm)(1)(2)(3)(4)(5)(9)(10)上緣103103448374477695103下緣275927339850應(yīng)力部位組合Ⅰ組合ⅢM