【摘要】如何學(xué)好立體幾何立體幾何在歷年的高考中有兩到三道小題,必有一道大題。雖然分值比重不是特別大,但是起著舉足輕重的作用。下面就如何學(xué)好立體幾何談幾點(diǎn)建議。一立足課本,夯實(shí)基礎(chǔ)直線和平面這些內(nèi)容,是立體幾何的基礎(chǔ),學(xué)好這部分的一個(gè)捷徑就是認(rèn)真學(xué)習(xí)定理的證明,尤其是一些很關(guān)鍵的定理的證明。例如:三垂線定理。定理的內(nèi)容都很簡(jiǎn)單,就是線與線,線與面,面與面之間的關(guān)系的闡述。但定理的
2024-10-04 17:14
【摘要】精品資源1.在平行六面體OABC---DEFG中(如圖),側(cè)面OABC和CBFG是單位正方形,面OCGD是菱形且∠COD=60°.設(shè)a是常數(shù)且0a1,P是EB上的點(diǎn)且分EB的比為2:1,Q在GE上,且分線段GE的比為a(1-a).(1)試用(2)當(dāng)a為何值時(shí),有最小值?解(1)所以平行六面體OABC---DEFG為
2025-04-17 07:36
【摘要】處理球的“內(nèi)切”“外接”問(wèn)題一、球與棱柱的組合體問(wèn)題:1正方體的內(nèi)切球:設(shè)正方體的棱長(zhǎng)為,求(1)內(nèi)切球半徑;(2)外接球半徑;(3)與棱相切的球半徑。(1)截面圖為正方形的內(nèi)切圓,得;(2)與正方體各棱相切的球:球與正方體的各棱相切,切點(diǎn)為各棱的中點(diǎn),如圖4作截面圖,圓為正方形的外接圓,易得。圖3圖4圖5(3)正方體的外接球:正方體的八個(gè)頂點(diǎn)都在球面上
2025-03-24 12:03
【摘要】高考立體幾何大題及答案1.(2009全國(guó)卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。2.(2009全國(guó)卷Ⅱ文)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二面
2025-06-26 05:02
【摘要】高考立體幾何大題及答案1.(2009全國(guó)卷Ⅰ文)如圖,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。2.(2009全國(guó)卷Ⅱ文)如圖,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)
2025-06-26 04:58
【摘要】,四棱錐中,底面為矩形,底面,,,點(diǎn)在側(cè)棱上,。(I)證明:是側(cè)棱的中點(diǎn);求二面角的大小。,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分別為AA1、B1C的中點(diǎn),DE⊥平面BCC1(Ⅰ)證明:AB=AC(Ⅱ)設(shè)二面角A-BACBA1B1C1DED-C為60
2025-06-26 04:57
【摘要】立體幾何中的探索性問(wèn)題一、探索平行關(guān)系1.[2016·棗強(qiáng)中學(xué)模擬]如圖所示,在正四棱柱A1C中,E,F(xiàn),G,H分別是棱CC1,C1D1,D1D,DC的中點(diǎn),N是BC的中點(diǎn),點(diǎn)M在四邊形EFGH及其內(nèi)部運(yùn)動(dòng),則M只需滿足條件________,就有MN∥平面B1BDD1.(注:請(qǐng)?zhí)钌弦粋€(gè)你認(rèn)為正確的條件,不必考慮全部可能的情況)答案:M位于線段FH上(答案不唯
2025-03-25 06:43
【摘要】1.如果直線與直線互相垂直,那么的值等于(A);(B);(C);(D).2.如圖,在正方體中,、分別是、的中點(diǎn),則圖中陰影部分在平面上的正投影為3.設(shè)、、、是空間四個(gè)不同的點(diǎn),在下列四個(gè)命題中,不正確的是
2025-08-05 17:45
【摘要】立體幾何專題之二面角問(wèn)題北京大學(xué)光華管理學(xué)院何洋立體幾何高考情況簡(jiǎn)述2022年2022年2022年文科理科文科理科文科理科選擇題222222填空題111110解答題111111二面角問(wèn)題高考情況簡(jiǎn)述?除2022年北京
2025-07-20 07:01
【摘要】幾何體的外接球一、球的性質(zhì)回顧如右圖所示:O為球心,O’為球O的一個(gè)小圓的圓心,則此時(shí)OO’垂直于圓O’所在平面。二、常見(jiàn)平面幾何圖形的外接圓外接圓半徑(r)的求法1、三角形:(1)等邊三角形:等邊三角形也即正三角形,其滿足正多邊形的基本特征:五心合一,即內(nèi)心、外心、重心、垂心、中心重合于一點(diǎn)。內(nèi)心:內(nèi)切圓圓心,各角角平分線的交點(diǎn);外心:外
2025-03-24 12:12
【摘要】立體幾何常考證明題匯總考點(diǎn):線面垂直,面面垂直的判定2、如圖,已知空間四邊形中,,是的中點(diǎn)。求證:(1)平面CDE;(2)平面平面。考點(diǎn):線面平行的判定A1ED1C1B1DCBA3、如圖,在正方體中,是的中點(diǎn),求證:平面。考點(diǎn):線面垂直的判定4、已知中,面,,求證:面.
2025-03-25 06:44
【摘要】1.(2013年高考遼寧卷(文))如圖,(I)求證:(II)設(shè)(文))如圖,四棱柱ABCD-A1B1C1D1的底面ABCD是正方形,O為底面中心,A1O⊥平面ABCD,.(Ⅰ)證明:A1BD//平面CD1B1;(Ⅱ)求三棱柱ABD-A1B1D1的體積.3.(2013年高考
2025-04-17 13:06
【摘要】立體幾何大題練習(xí)(文科):1.如圖,在四棱錐S﹣ABCD中,底面ABCD是梯形,AB∥DC,∠ABC=90°,AD=SD,BC=CD=,側(cè)面SAD⊥底面ABCD.(1)求證:平面SBD⊥平面SAD;(2)若∠SDA=120°,且三棱錐S﹣BCD的體積為,求側(cè)面△SAB的面積.【分析】(1)由梯形ABCD,設(shè)BC=a,則CD=a,AB=2a,運(yùn)用
2025-07-24 12:10
【摘要】幾何體的外接球與內(nèi)切球1、內(nèi)切球球心到多面體各面的距離均相等,外接球球心到多面體各頂點(diǎn)的距離均相等。2、正多面體的內(nèi)切球和外接球的球心重合。3、正棱錐的內(nèi)切球和外接球球心都在高線上,但不重合。4、體積分割是求內(nèi)切球半徑的通用做法。一、外接球(一)多面體幾何性質(zhì)法1、已知各頂點(diǎn)都在同一個(gè)球面上的正四棱柱的高為4,體積為16,則這個(gè)球的表面積是A.B
2025-06-24 15:20
【摘要】專題四立體幾何/1/.ABCDABEFABMACNFBAMFNMNBCE???兩個(gè)全等的正方形和所在平面相交于,,,且,求證:平面例()//()()//?解決本題的關(guān)鍵在于找出平面內(nèi)的一條直線
2025-07-18 00:17