【正文】
技術的發(fā)展趨勢[J]. 城市環(huán)境和城市生態(tài), 2002, 15(5): 4547.[3]高素華, 潘亞茹. 溫室效應對氣候和農(nóng)業(yè)的影響[J]. 環(huán)境科學, 1991, 12(2): 7376.[4]辛洪川, 劉長厚, 張守臣等. 負載型La(2x)SrxCuO4催化分解N2O的研究[J].化學通報, 2004, 11(2): 848853.[5]孫娜, 楊豐科, 劉均洪. 降低N2O排放的己二酸尾氣處理技術[J]. 工業(yè)催化, 2003, 11(6): 11.[6]Winter E R S. The deposition of nitrous oxide on the rareearth sesquioxides and related oxides [J]. J. Catal., 1969, 15: 144152.[7]Winter E R S. The deposition of nitrous oxide on metallic oxides PartⅡ[J]. ., 1970, 19: 3240.[8]Winter E R S. The deposition of N2O on oxide catalysts: Ⅲ. The effect of O2[J]. J. Catal., 1974, 34: 431439.[9]Tan S A, Grand B, Lambert M. The silvercatalysed deposition of N2O and the catalytic oxidation of ethylene by N2O over Ag(111) and Ag/αAl2O3[J]. J. Catal., 1987, 104: 156163.[10]Sivaraj C, Reddy B M, Rao P K. Selective enhancement of surface Cu+ species in CuO/ZnO/Al2O3 catalyst by nitrous oxide deposition[J]. J. Mole. Catal., 1988,47:1720.[11]Yamashita T, Vannice A. N2O deposition over manganese oxides[J]. J. Catal., 1996, 161: 254262.[12]Zemva P, Lesar A, Kobal I, et al. Interpretation of kinetic isotope effects in the deposition of N2O over CoO[J]. Chem. Phys., 2001, 264: 413418.[13]Ohnishi C, Asano K, Iwanoto S, et al. Preparation of Co3O4 catalysts for direct deposition of nitrous oxide under industrial conditions[J]. Stud. Surf. And Catal., 2006,162: 737744.[14]Christopher J, Swamy C S. Studies on the catalytic deposition of N2O on LnSrFeO4 (Ln=La,Pr, Nd, Sm and Gd)[J]. J. Mole. Catal., 1991, 68: 199213.[15]Belapurkar D, Gupta N M, Phatak G M, et al. Role of oxygen vacancies in the deposition of N2O over YBa2CuO7Ъ and Gd2CuO4 oxide systems[J]. J. Mole. Catal., 1994, 87: 287295.[16]Morterra C, Giamello E, Cerrato G, et al. Role of surface hydration state on the naturereactivity of Copper ions in CuZrO2 catalysts: N2O deposition[J]. J. Catal., 1998, 179: 11112.[17]Gao L A, Au C T. Studies on the deposition of N2O over Nd2CuO4, and [J]. J. Mole. Catal. A: Chemical., 2001, 168: 173186.[18]PerezAlonso F J, Meli225。79~ 80(4):495~ 501[37]van Sint Annaland M ,Kuipers J A M,van Swoaij W P M.A Kinetic Rate Expression for the Time—Dependent Coke Formation Rate during Propane De hydrogenation over a Platinum Alumina Monolithic Catalyst.Catalysis Today,2001,66(4):427~ 436符號說明符號意義計量單位yi氣體中i組分的摩爾分數(shù)Aii組分色譜響應峰面積i物質絕對摩爾響應因子N2O分解率T溫度℃GVSH空速h1m(cat)催化劑質量gD晶粒大小nmt停留時間s。zinger H, Tsyntsarski B, Dimitrov L. Effect of water on the reduction of NOx with propane on FeZSM5. An FTIR mechanistic study[J]. Catal. Lett., 1999, 62: 3540.[23]Shimoka W M, Hirano K, Takezawa N. Temperature programmed desorption study of adsorbed species formed by the deposition of N2O on ionexchanged zeolite catalysts[J]. Catal. Toda., 1998, 45: 117122.[24]Ramanujachary K V, Vijayakumar K M, Swamy C S, Bangladesh J. Chemistry of surface oxygen formed from N2O on ZSM5 at moderate temperatures [J]. Acad. Science., 1981, 49: 25.[25]Turek T. A Transient kinetic study of the oscillating N2O deposition over CuZSM5[J]. J. Catal., 1998,174: 98108.[26]Ciambelli P, Benedetto A D, Garufi E, et al. Spontaneous isothermal oscillations in N2O deposition over a CuZSM5 catalyst[J]. J. Catal., 1998, 175: 161169.[27]Panov G I, Sobolev V I, Kharitonov A S. The role of iron in N2O deposition on ZSM5 zeolite and reactivity of the surface oxygen formed[J]. J. Mole. Catal., 1990, 61:8597.[28]DiRenzo F,Albizane A,Nieolle of Zeolites in Tetraethyla Mmonium Media[J].Stud Surf Sci Catal,1991,65:603612[29]祁曉嵐, 劉希堯. β沸石合成與表征的研究進展[J]. 分子催化. 1999, 12, 13(6):471482[30]Cybulski A,Moulijn J A.Structure Catalysts and Reactors.New York:Marcel Dekker,l998,l5~284[31]戴特林J C,羅辛斯基V,萬宗榮.整體催化劑及制備方法.中國.CN l4兒394A.2003[32]Groppi G,Tronconi E.Simulation of Structure Catalytic Reactor with Enhanced Thermal Conductivity for Selective Oxidation Reaction.Catalysis Today.2001,69(1):63~73[33]Crezee E,Barendregt A,Kapteijn F,et a1.Carbon Coated Monolithic Catalysts in Selective 0xidation of Cycl0hexan0ne.Catalysis Today,2001,69(3):283~ 290[34]Schneider R。(5)通過SEM表征可以看到應用一步法制備的整體式催化劑要比兩步法制備的在分子篩的涂覆上要更加致密,效果更好。最后得出以下結論:(1)兩步涂覆法中Fe、Co改性的Beta、MCM4ZSMFER、MOR分子篩中,對于N2O直接分解催化活性最高的為CoBeta,F(xiàn)eBeta次之。(2)通過比較圖42和43的分子篩涂覆情況,可以看出當膠量為10%時涂覆的分子篩不如5%的膠量時所涂覆的均勻,而是分散于孔道中,其十分容易造成孔道的堵塞。圖52 各種改性FER分子篩的XRD譜圖由圖可見FER分子篩的XRD圖中出現(xiàn)的特征峰符合FER分子篩的特征峰,從圖中我們并未發(fā)現(xiàn)金屬氧化物的XRD特征峰,說明550℃焙燒并未改變分子篩的晶相結構,也未生成金屬氧化物。(2)實際操作過程中,兩步法的操作較一步法復雜,制備時間久,周期長,且容易出現(xiàn)堵孔現(xiàn)象。(3)10%鋁溶膠制備的CoBEA分子篩整體式催化劑活性較5%鋁溶膠制備的FeBEA分子篩整體式催化劑活性低,其原因可能為過量的鋁溶膠覆蓋了表面可參與反應的FeBEA分子篩。其原因可能為在一步法制備整體式催化劑時,硅溶膠與FeBEA粉末分子篩混合,使得表面可參與反應的FeB