freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高考數(shù)學(xué)知識點歸納(文件)

2025-05-05 13:01 上一頁面

下一頁面
 

【正文】 次不等式axb解的討論;②一元二次不等式ax2+box0(a0)解的討論. 二次函數(shù)()的圖象一元二次方程有兩相異實根有兩相等實根 無實根 R (1)標(biāo)準(zhǔn)化:移項通分化為0(或0); ≥0(或≤0)的形式,(2)轉(zhuǎn)化為整式不等式(組)(1)公式法:,與型的不等式的解法.(2)定義法:用“零點分區(qū)間法”分類討論.(3)幾何法:根據(jù)絕對值的幾何意義用數(shù)形結(jié)合思想方法解題.一元二次方程ax2+bx+c=0(a≠0)(1)根的“零分布”:根據(jù)判別式和韋達(dá)定理分析列式解之.(2)根的“非零分布”:作二次函數(shù)圖象,用數(shù)形結(jié)合思想分析列式解之.(三)簡易邏輯命題的定義:可以判斷真假的語句叫做命題。(1)交換原命題的條件和結(jié)論,所得的命題是逆命題; (2)同時否定原命題的條件和結(jié)論,所得的命題是否命題; (3)交換原命題的條件和結(jié)論,并且同時否定,所得的命題是逆否命題.四種命題之間的相互關(guān)系:一個命題的真假與其他三個命題的真假有如下三條關(guān)系:(原命題逆否命題)①、原命題為真,它的逆命題不一定為真。若pq且qp,則稱p是q的充要條件,記為p?q.反證法:從命題結(jié)論的反面出發(fā)(假設(shè)),引出(與已知、公理、定理…)矛盾,從而否定假設(shè)證明原命題成立,這樣的證明方法叫做反證法。.有理指數(shù)冪的運(yùn)算性質(zhì).指數(shù)函數(shù).?dāng)?shù)學(xué)探索169。(1)了解映射的概念,理解函數(shù)的概念.?dāng)?shù)學(xué)探索169。(5)理解對數(shù)的概念,掌握對數(shù)的運(yùn)算性質(zhì);掌握對數(shù)函數(shù)的概念、圖像和性質(zhì).?dāng)?shù)學(xué)探索169。x0時,y1.(5)在 R上是增函數(shù)(5)在R上是減函數(shù)對數(shù)函數(shù)y=logax的圖象和性質(zhì):對數(shù)運(yùn)算:(以上)a10a1圖象性質(zhì)(1)定義域:(0,+∞)(2)值域:R(3)過點(1,0),即當(dāng)x=1時,y=0(4)時 時 y0時 時(5)在(0,+∞)上是增函數(shù)在(0,+∞)上是減函數(shù)注⑴:當(dāng)時,.⑵:當(dāng)時,取“+”,當(dāng)是偶數(shù)時且時,而,故取“—”.例如:中x>0而中x∈R).⑵()與互為反函數(shù).當(dāng)時,的值越大,越靠近軸;當(dāng)時,則相反.(四)方法總結(jié)⑴.相同函數(shù)的判定方法:定義域相同且對應(yīng)法則相同.⑴對數(shù)運(yùn)算:(以上)注⑴:當(dāng)時,.⑵:當(dāng)時,取“+”,當(dāng)是偶數(shù)時且時,而,故取“—”.例如:中x>0而中x∈R).⑵()與互為反函數(shù).當(dāng)時,的值越大,越靠近軸;當(dāng)時,則相反.⑵.函數(shù)表達(dá)式的求法:①定義法;②換元法;③待定系數(shù)法.⑶.反函數(shù)的求法:先解x,互換x、y,注明反函數(shù)的定義域(即原函數(shù)的值域).⑷.函數(shù)的定義域的求法:布列使函數(shù)有意義的自變量的不等關(guān)系式,①分母不為0;②偶次根式中被開方數(shù)不小于0;③對數(shù)的真數(shù)大于0,底數(shù)大于零且不等于1;④零指數(shù)冪的底數(shù)不等于零;⑤實際問題要考慮實際意義等.⑸.函數(shù)值域的求法:①配方法(二次或四次);②“判別式法”;③反函數(shù)法;④換元法;⑤不等式法;⑥函數(shù)的單調(diào)性法.⑹.單調(diào)性的判定法:①設(shè)x,x是所研究區(qū)間內(nèi)任兩個自變量,且x<x;②判定f(x)與f(x)的大?。虎圩鞑畋容^或作商比較.⑺.奇偶性的判定法:首先考察定義域是否關(guān)于原點對稱,再計算f(x)與f(x)之間的關(guān)系:①f(x)=f(x)為偶函數(shù);f(x)=f(x)為奇函數(shù);②f(x)f(x)=0為偶;f(x)+f(x)=0為奇;③f(x)/f(x)=1是偶;f(x)247。.等比數(shù)列前n項和公式.?dāng)?shù)學(xué)探索169。(3)理解等比數(shù)列的概念,掌握等比數(shù)列的通項公式與前n項和公式,井能解決簡單的實際問題. 167。若成等比數(shù)列 (其中),則成等比數(shù)列。(2)通項公式法。(三)、數(shù)列求和的常用方法1. 公式法:適用于等差、等比數(shù)列或可轉(zhuǎn)化為等差、等比數(shù)列的數(shù)列。.弧度制.?dāng)?shù)學(xué)探索169。.余弦定理.斜三角形解法.?dāng)?shù)學(xué)探索169。(3)掌握兩角和與兩角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.?dāng)?shù)學(xué)探索169。(7)掌握正弦定理、余弦定理,并能初步運(yùn)用它們解斜三角形.?dāng)?shù)學(xué)探索169。)終邊相同的角的集合(角與角的終邊重合):②終邊在x軸上的角的集合: ③終邊在y軸上的角的集合:④終邊在坐標(biāo)軸上的角的集合: ⑤終邊在y=x軸上的角的集合: ⑥終邊在軸上的角的集合:⑦若角與角的終邊關(guān)于x軸對稱,則角與角的關(guān)系:⑧若角與角的終邊關(guān)于y軸對稱,則角與角的關(guān)系:⑨若角與角的終邊在一條直線上,則角與角的關(guān)系:⑩角與角的終邊互相垂直,則角與角的關(guān)系:2. 角度與弧度的互換關(guān)系:360176。=57176。18ˊ. 1176。;:數(shù)學(xué)探索169。(4)了解平面向量的基本定理,理解平面向量的坐標(biāo)的概念,掌握平面向量的坐標(biāo)運(yùn)算.?dāng)?shù)學(xué)探索169。0時, 異向。sinB=1/2cb(2)掌握兩個(不擴(kuò)展到三個)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù)的定理,并會簡單的應(yīng)用.?dāng)?shù)學(xué)探索169。167。.簡單的線性規(guī)劃問題.?dāng)?shù)學(xué)探索169。(1)理解直線的傾斜角和斜率的概念,掌握過兩點的直線的斜率公式,掌握直線方程的點斜式、兩點式、一般式,并能根據(jù)條件熟練地求出直線方程.?dāng)?shù)學(xué)探索169。(5)了解解析幾何的基本思想,了解坐標(biāo)法.?dāng)?shù)學(xué)探索169。若點P(x,y)分有向線段,其中P1(x1,y1),P2(x2,y2).則 特例,中點坐標(biāo)公式;重要結(jié)論,三角形重心坐標(biāo)公式。則稱方程f(x,y)=0為曲線C的方程,曲線C叫做方程f(x,y)=0的曲線。.橢圓的簡單幾何性質(zhì).橢圓的參數(shù)方程.?dāng)?shù)學(xué)探索169。(1)掌握橢圓的定義、標(biāo)準(zhǔn)方程和橢圓的簡單幾何性質(zhì),了解橢圓的參數(shù)方程.?dāng)?shù)學(xué)探索169。08. 圓錐曲線方程 知識要點一、橢圓方程.1. 橢圓方程的第一定義:⑴①橢圓的標(biāo)準(zhǔn)方程:i. 中心在原點,焦點在x軸上:. ii. 中心在原點,焦點在軸上:. ②一般方程:.③橢圓的標(biāo)準(zhǔn)參數(shù)方程:的參數(shù)方程為(一象限應(yīng)是屬于).⑵①頂點:或.②軸:對稱軸:x軸,軸;長軸長,短軸長.③焦點:或.④焦距:.⑤準(zhǔn)線:或.⑥離心率:.⑦焦點半徑:i. 設(shè)為橢圓上的一點,為左、右焦點,則由橢圓方程的第二定義可以推出.,為上、下焦點,則由橢圓方程的第二定義可以推出.由橢圓第二定義可知:歸結(jié)起來為“左加右減”.注意:橢圓參數(shù)方程的推導(dǎo):得方程的軌跡為橢圓. ⑧通徑::和⑶共離心率的橢圓系的方程:橢圓的離心率是,方程是大于0的參數(shù),的離心率也是 我們稱此方程為共離心率的橢圓系方程.⑸若P是橢圓:,若,則的面積為(用余弦定理與可得). 若是雙曲線,則面積為.二、雙曲線方程.1. 雙曲線的第一定義:⑴①雙曲線標(biāo)準(zhǔn)方程:. 一般方程:.⑵①i. 焦點在x軸上: 頂點: 焦點: 準(zhǔn)線方程 漸近線方程:或ii. 焦點在軸上:頂點:. 焦點:. 準(zhǔn)線方程:. 漸近線方程:或,參數(shù)方程:或 .②軸為對稱軸,實軸長為2a, 虛軸長為2b,焦距2c. ③離心率. ④準(zhǔn)線距(兩準(zhǔn)線的距離);通徑. ⑤參數(shù)關(guān)系. ⑥焦點半徑公式:對于雙曲線方程(分別為雙曲線的左、右焦點或分別為雙曲線的上下焦點) “長加短減”原則: 構(gòu)成滿足 (與橢圓焦半徑不同,橢圓焦半徑要帶符號計算,而雙曲線不帶符號) ⑶等軸雙曲線:雙曲線稱為等軸雙曲線,其漸近線方程為,離心率.⑷共軛雙曲線:以已知雙曲線的虛軸為實軸,實軸為虛軸的雙曲線,它們具有共同的漸近線:.⑸共漸近線的雙曲線系方程:的漸近線方程為如果雙曲線的漸近線為時,它的雙曲線方程可設(shè)為.例如:若雙曲線一條漸近線為且過,求雙曲線的方程?解:令雙曲線的方程為:,代入得.⑹直線與雙曲線的位置關(guān)系:區(qū)域①:無切線,2條與漸近線平行的直線,合計2條;區(qū)域②:即定點在雙曲線上,1條切線,2條與漸近線平行的直線,合計3條;區(qū)域③:2條切線,2條與漸近線平行的直線,合計4條;區(qū)域④:即定點在漸近線上且非原點,1條切線,1條與漸近線平行的直線,合計2條;區(qū)域⑤:即過原點,無切線,無與漸近線平行的直線.小結(jié):過定點作直線與雙曲線有且僅有一個交點,可以作出的直線數(shù)目可能有0、4條.(2)若直線與雙曲線一支有交點,交點為二個時,求確定直線的斜率可用代入法與漸近線求交和兩根之和與兩根之積同號.⑺若P在雙曲線,則常用結(jié)論1:P到焦點的距離為m = n,則P到兩準(zhǔn)線的距離比為m︰n. 簡證: = .常用結(jié)論2:從雙曲線一個焦點到另一條漸近線的距離等于b.三、拋物線方程.3. 設(shè),拋物線的標(biāo)準(zhǔn)方程、類型及其幾何性質(zhì):圖形焦點準(zhǔn)線范圍對稱軸軸軸頂點 (0,0)離心率焦點注:①頂點.②則焦點半徑。y163。0中心原點O(0,0)原點O(0,0)頂點(a,0), (─a,0), (0,b) , (0,─b)(a,0), (─a,0)(0,0)對稱軸x軸,y軸;長軸長2a,短軸長2bx軸,y軸。.直線和平面垂直的判定與性質(zhì).點到平面的距離.斜線在平面上的射影.直線和平面所成的角.三垂線定理及其逆定理.?dāng)?shù)學(xué)探索169。(1)掌握平面的基本性質(zhì),會用斜二測的畫法畫水平放置的平面圖形的直觀圖。(4)掌握兩個平面平行的判定定理和性質(zhì)定理,掌握二面角、二面角的平面角、兩個平行平面間的距離的概念,掌握兩個平面垂直的判定定理和性質(zhì)定理.?dāng)?shù)學(xué)探索169。(8)了解棱錐的概念,掌握正棱錐的性質(zhì),會畫正棱錐的直觀圖.?dāng)?shù)學(xué)探索169。:數(shù)學(xué)探索169。.?dāng)?shù)學(xué)探索169。.平行平面間的距離.二面角及其平面角.兩個平面垂直的判定和性質(zhì).?dāng)?shù)學(xué)探索169。會用斜二測的畫法畫水平放置的平面圖形的直觀圖:能夠畫出空間兩條直線、.?dāng)?shù)學(xué)探索169。(5)掌握空間向量的數(shù)量積的定義及其性質(zhì):掌握用直角坐標(biāo)計算空間向量數(shù)量積的公式;掌握空間兩點間距離公式.?dāng)?shù)學(xué)探索169。了解正多面體的概念.?dāng)?shù)學(xué)探索169。(11)、體積公式.?dāng)?shù)學(xué)探索169。則為正方形.3. 球:⑴球的截面是一個圓面.①球的表面積公式:.②球的體積公式:.⑵緯度、經(jīng)度:①緯度:地球上一點的緯度是指經(jīng)過點的球半徑與赤道面所成的角的度數(shù).②經(jīng)度:地球上兩點的經(jīng)度差,是指分別經(jīng)過這兩點的經(jīng)線與地軸所確定的二個半平面的二面角的度數(shù),特別地,當(dāng)經(jīng)過點的經(jīng)線是本初子午線時,這個二面角的度數(shù)就是點的經(jīng)度.附:①圓柱體積:(為半徑,為高)②圓錐體積:(為半徑,為高)③錐形體積:(為底面積,為高) 4. ①內(nèi)切球:當(dāng)四面體為正四面體時,設(shè)邊長為a,得.注:球內(nèi)切于四面體:②外接球:球外接于正四面體,可如圖建立關(guān)系式.六. 空間向量.1. (1)共線向量:共線向量亦稱平行向量,指空間向量的有向線段所在直線互相平行或重合.注:①若與共線,與共線,則與共線.() [當(dāng)時,不成立]②向量共面即它們所在直線共面.() [可能異面]③若∥,則存在小任一實數(shù),使.()[與不成立]④若為非零向量,則.(√)[這里用到之積仍為向量](2)共線向量定理:對空間任意兩個向量, ∥的充要條件是存在實數(shù)(具有唯一性),使.(3)共面向量:若向量使之平行于平面或在內(nèi),則與的關(guān)系是平行,記作∥.(4)①共面向量定理:如果兩個向量不共線,則向量與向量共面的充要條件是存在實數(shù)對x、y使.②空間任一點O和不共線三點A、B、C,則是PABC四點共面的充要條件.(簡證:P、A、B、C四點共面)注:①②是證明四點共面的常用方法.2. 空間向量基本定理:如果三個向量不共面,那么對空間任一向量,存在一個唯一的有序?qū)崝?shù)組x、y、z,使.推論:設(shè)O、A、B、C是不共面的四點,則對空間任一點P, 都存在唯一的有序?qū)崝?shù)組x、y、z使 (這里隱含x+y+z≠1).注:設(shè)四面體ABCD的三條棱,其中Q是△BCD的重心,則向量用即證.3. (1)空間向量的坐標(biāo):空間直角坐標(biāo)系的x軸是橫軸(對應(yīng)為橫坐標(biāo)),y軸是縱軸(對應(yīng)為縱軸),z軸是豎軸(對應(yīng)為豎坐標(biāo)).①令=(a1,a2,a3),,則 ∥ (用到常用的向量模與向量之間的轉(zhuǎn)化:)②空間兩點的距離公式:.(2)法向量:若向量所在直線垂直于平面,則稱這個向量垂直于平面,記作,如果那么向量叫做平面的法向量. (3)用向量的常用方法:①利用法向量求點到面的距離定理:如圖,設(shè)n是平面的法向量,AB是平面的一條射線,其中,則點B到平面的距離為.②利用法向量求二面角的平面角定理:設(shè)分別是二面角中平面的法向量,則所成的角就是所求二面角的平面角或其補(bǔ)角大?。ǚ较蛳嗤?。167。(10)了解棱錐的概念,掌握正棱錐的性質(zhì)。(7)掌握直線和直線、直線和平面、平面和平面所成的角、只要求會計算已給出公垂線或在坐標(biāo)表示下的距離掌握直線和平面垂直的性質(zhì)定理掌握兩個平面平行、垂直的判定定理和性質(zhì)定理.?dāng)?shù)學(xué)探索169。(3)理解空間向量的概念,掌握空間向量的加法、減法和數(shù)乘.?dāng)?shù)學(xué)探索169。:數(shù)學(xué)探索169。.異面直線所成的角.異面直線的公垂線.異面直線的距離.?dāng)?shù)學(xué)探索169。.?dāng)?shù)學(xué)探索169。(B).直線、平面、簡單幾何體(6)
點擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1