【摘要】勾股定理的逆定理第十七章勾股定理第1課時一、情境引入?據(jù)說,幾千年前的古埃及人就已經知道,在一根繩子上連續(xù)打上等距離的13個結,然后,用釘子將第1個與第13個結釘在一起,拉緊繩子,再在第4個和第8個結處各釘上一個釘子,如圖。這樣圍成的三角形中,最長邊所對的角就是直角。知道為什么嗎?也就意味著,如果圍成三
2024-12-07 17:29
【摘要】勾股定理的逆定理人教版數(shù)學八年級下冊.重點、互逆定理難點3.能靈活運用勾股定理的逆定理解決實際問題.重點學習目標(1)在Rt△ABC,∠C=90°,a=8,b=15,則c=.(2)在Rt△ABC,∠B=90
2025-07-18 12:59
【摘要】.勾股定理(2)2問題(1)求出下列直角三角形中未知的邊。CABCBAABCABC30045022158106(2)在長方形ABCD中,寬AB為1m,長BC為2m,求AC長。一個門框的尺寸如圖所示。(1)若有一塊長3米,寬,問怎樣
2025-08-16 01:50
【摘要】第一篇:勾股定理的逆定理教學設計 勾股定理的逆定理教學設計 目標和目標解析 (1)理解勾股定理的逆定理.(2)了解互逆命題、 達成目標(1)的標志是學生經歷“實驗測量-猜想-論證”的定理探...
2024-11-04 17:57
【摘要】第一篇:勾股定理的逆定理的證明 用“勾股定理”證明“勾股定理的逆定理”——反證法 湛江市愛周中學伍彩梅 八年級數(shù)學學習的勾股定理,是幾何學中幾個最重要的定理之一,它揭示了一個直角三角形三邊之間的...
2024-11-04 18:25
【摘要】活動1問題1:小紅和小軍周日去郊外放風箏,風箏飛得又高又遠,他倆很想知道風箏離地面到底有多高,你能幫助他們嗎?問題2:如下圖所示是一尊雕塑的底座的正面,李叔叔想要檢測正面的AD邊和BC邊是垂直于底邊AB,但他隨身只帶了卷尺(1)你能替他想想辦法完成任務嗎?(2)李叔叔量得AD的長是30厘米,AB的長
2024-11-06 19:32
【摘要】第一篇:勾股定理證明方法 勾股定理證明方法 勾股定理的種證明方法(部分) 【證法1】(梅文鼎證明) 做四個全等的直角三角形,設它們的兩條直角邊長分別為a、b,,使D、E、.∵D、E、F在一條直...
2024-11-16 04:15
【摘要】勾股定理復習(二)回顧本章內容:直角三角形三邊關系勾股定理cba直角三角形a2+b2=c2直角三角形的判別cbaa2+b2=c2直角三角形(形)(數(shù))(形)(數(shù))Rt?ABC中,AB=c,BC=a,AC=b,?B=90?.(1)
2025-10-03 10:56
【摘要】勾股定理(1)回憶:我們學過直角三角形的哪些性質?看一看相傳二五OO年前,有一次畢達哥拉斯去朋友家作客,發(fā)現(xiàn)朋友家用磚鋪成的地面反映直角三角形三邊的某種數(shù)量關系,同學們,我們也來觀察下面的圖案,看看你能發(fā)現(xiàn)什么?數(shù)學家畢達哥拉斯的發(fā)現(xiàn):A
2025-07-18 13:05
【摘要】這就是本屆大會會徽的圖案.古希臘著名數(shù)學家畢達哥拉斯的發(fā)現(xiàn)ABCA、B、C的面積有什么關系?直角三角形三邊有什么關系?SA+SB=SC等腰Rt△,兩直角邊的平方和等于斜邊的平方a2+b2=c2abcBAC圖甲圖乙A的面積B的面積C的面積
2025-08-01 16:45
【摘要】2勾股定理的應用知識回顧:1勾股定理的條件和結論分別是什么?2a、b、c分別是直角三角形的三邊,則一定有a2=c2-b2嗎?勾股定理的應用根據(jù)勾股定理,在直角三角形中,已知任意兩條邊長,可以求出第三條邊的長。例1.在Rt?ABC中,∠C=90°
2024-11-06 19:33
【摘要】課題:勾股定理一:實例展示二:講授新課三:定理應用四:小結與練習小蝸牛走路ABCD蝸牛走了多長的路?小鳥飛行小鳥飛了多遠?8米2米8米飛機的速度有多少?????乙甲北南西東港口AB輪船航
2024-11-22 00:01
【摘要】勾股定理說課稿 勾股定理說課稿1一、說教材分析: (一)本節(jié)內容在全書和章節(jié)的地位 這節(jié)課是九年制義務教育課程標準實驗教科書(華東版),八年級第十九章第二節(jié)“勾股定理”第一課時。...
2024-12-06 22:46
【摘要】直角三角形的性質和判定(Ⅱ)第3課時勾股定理的逆定理第1章直角三角形提示:點擊進入習題答案顯示6789D60見習題D10C1234DAC見習題5C11121314B見習題見習題見習題12直角三角形勾股數(shù)新知筆記15見習題
2024-12-28 00:36
【摘要】勾股定理的逆定理的教學設計保靖縣清水坪學校李純召教學目標知識目標1.理解勾股定理的逆定理,并會證明勾股定理的逆定理;2.理解互逆命題、互逆定理、勾股數(shù)的概念及互逆命題之間的關系;3.掌握勾股定理的逆定理,并能利用勾股定
2025-04-16 23:55