freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

全國(guó)通用高中數(shù)學(xué)高考知識(shí)點(diǎn)總結(jié)(文件)

 

【正文】 數(shù)列:各項(xiàng)相等的數(shù)列.1擺動(dòng)數(shù)列:從第2項(xiàng)起,有些項(xiàng)大于它的前一項(xiàng),有些項(xiàng)小于它的前一項(xiàng)的數(shù)列.1數(shù)列的通項(xiàng)公式:表示數(shù)列的第項(xiàng)與序號(hào)之間的關(guān)系的公式.1數(shù)列的遞推公式:表示任一項(xiàng)與它的前一項(xiàng)(或前幾項(xiàng))間的關(guān)系的公式.1如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),則這個(gè)數(shù)列稱為等差數(shù)列,這個(gè)常數(shù)稱為等差數(shù)列的公差.1由三個(gè)數(shù),組成的等差數(shù)列可以看成最簡(jiǎn)單的等差數(shù)列,則稱為與的等差中項(xiàng).若,則稱為與的等差中項(xiàng).1若等差數(shù)列的首項(xiàng)是,公差是,則.通項(xiàng)公式的變形:①;②;③;④;⑤.2若是等差數(shù)列,且(、),則;若是等差數(shù)列,且(、),則.2等差數(shù)列的前項(xiàng)和的公式:①;②.2等差數(shù)列的前項(xiàng)和的性質(zhì):①若項(xiàng)數(shù)為,則,且,.②若項(xiàng)數(shù)為,則,且,(其中,).2如果一個(gè)數(shù)列從第項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一個(gè)常數(shù),則這個(gè)數(shù)列稱為等比數(shù)列,這個(gè)常數(shù)稱為等比數(shù)列的公比.2在與中間插入一個(gè)數(shù),使,成等比數(shù)列,則稱為與的等比中項(xiàng).若,則稱為與的等比中項(xiàng).2若等比數(shù)列的首項(xiàng)是,公比是,則.2通項(xiàng)公式的變形:①;②;③;④.2若是等比數(shù)列,且(、),則;若是等比數(shù)列,且(、),則.2等比數(shù)列的前項(xiàng)和的公式:.等比數(shù)列的前項(xiàng)和的性質(zhì):①若項(xiàng)數(shù)為,則.②.③,成等比數(shù)列.31;;.3不等式的性質(zhì): ①;②;③;④,;⑤;⑥;⑦;⑧.3一元二次不等式:只含有一個(gè)未知數(shù),并且未知數(shù)的最高次數(shù)是的不等式.3二次函數(shù)的圖象、一元二次方程的根、一元二次不等式的解集間的關(guān)系:判別式二次函數(shù)的圖象一元二次方程的根有兩個(gè)相異實(shí)數(shù)根 有兩個(gè)相等實(shí)數(shù)根沒(méi)有實(shí)數(shù)根一元二次不等式的解集3二元一次不等式:含有兩個(gè)未知數(shù),并且未知數(shù)的次數(shù)是的不等式.3二元一次不等式組:由幾個(gè)二元一次不等式組成的不等式組.3二元一次不等式(組)的解集:滿足二元一次不等式組的和的取值構(gòu)成有序數(shù)對(duì),所有這樣的有序數(shù)對(duì)構(gòu)成的集合.3在平面直角坐標(biāo)系中,已知直線,坐標(biāo)平面內(nèi)的點(diǎn).①若,則點(diǎn)在直線的上方.②若,則點(diǎn)在直線的下方.3在平面直角坐標(biāo)系中,已知直線.①若,則表示直線上方的區(qū)域;表示直線下方的區(qū)域.②若,則表示直線下方的區(qū)域;表示直線上方的區(qū)域.線性約束條件:由,的不等式(或方程)組成的不等式組,是,的線性約束條件.目標(biāo)函數(shù):欲達(dá)到最大值或最小值所涉及的變量,的解析式.線性目標(biāo)函數(shù):目標(biāo)函數(shù)為,的一次解析式.線性規(guī)劃問(wèn)題:求線性目標(biāo)函數(shù)在線性約束條件下的最大值或最小值問(wèn)題.可行解:滿足線性約束條件的解.可行域:所有可行解組成的集合.最優(yōu)解:使目標(biāo)函數(shù)取得最大值或最小值的可行解.4設(shè)、是兩個(gè)正數(shù),則稱為正數(shù)、的算術(shù)平均數(shù),稱為正數(shù)、的幾何平均數(shù).4均值不等式定理: 若,則,即.4常用的基本不等式:①;②;③;④.4極值定理:設(shè)、都為正數(shù),則有⑴若(和為定值),則當(dāng)時(shí),積取得最大值.⑵若(積為定值),則當(dāng)時(shí),和取得最小值.高中數(shù)學(xué)高考知識(shí)練習(xí) 1. 對(duì)于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無(wú)序性”。 6. 命題的四種形式及其相互關(guān)系是什么? (互為逆否關(guān)系的命題是等價(jià)命題。 11. 求一個(gè)函數(shù)的解析式或一個(gè)函數(shù)的反函數(shù)時(shí),注明函數(shù)的定義域了嗎? 12. 反函數(shù)存在的條件是什么? (一一對(duì)應(yīng)函數(shù)) 求反函數(shù)的步驟掌握了嗎? (①反解x;②互換x、y;③注明定義域) 13. 反函數(shù)的性質(zhì)有哪些? ①互為反函數(shù)的圖象關(guān)于直線y=x對(duì)稱; ②保存了原來(lái)函數(shù)的單調(diào)性、奇函數(shù)性; 14. 如何用定義證明函數(shù)的單調(diào)性? (取值、作差、判正負(fù)) 如何判斷復(fù)合函數(shù)的單調(diào)性? ∴……) 15. 如何利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性? 值是( ) A. 0 B. 1 C. 2 D. 3 ∴a的最大值為3) 16. 函數(shù)f(x)具有奇偶性的必要(非充分)條件是什么? (f(x)定義域關(guān)于原點(diǎn)對(duì)稱) 注意如下結(jié)論: (1)在公共定義域內(nèi):兩個(gè)奇函數(shù)的乘積是偶函數(shù);兩個(gè)偶函數(shù)的乘積是偶函數(shù);一個(gè)偶函數(shù)與奇函數(shù)的乘積是奇函數(shù)。 ③求區(qū)間定(動(dòng)),對(duì)稱軸動(dòng)(定)的最值問(wèn)題。 27. 在三角函數(shù)中求一個(gè)角時(shí)要注意兩個(gè)方面——先求出某一個(gè)三角函數(shù)值,再判定角的范圍。) 具體方法: (2)名的變換:化弦或化切 (3)次數(shù)的變換:升、降冪公式 (4)形的變換:統(tǒng)一函數(shù)形式,注意運(yùn)用代數(shù)運(yùn)算。 (移項(xiàng)通分,分子分母因式分解,x的系數(shù)變?yōu)?,穿軸法解得結(jié)果。 [練習(xí)] 48. 你知道儲(chǔ)蓄、貸款問(wèn)題嗎? △零存整取儲(chǔ)蓄(單利)本利和計(jì)算模型: 若每期存入本金p元,每期利率為r,n期后,本利和為: △若按復(fù)利,如貸款問(wèn)題——按揭貸款的每期還款計(jì)算模型(按揭貸款——分期等額歸還本息的借款種類) 若貸款(向銀行借款)p元,采用分期等額還款方式,從借款日算起,一期(如一年)后為第一次還款日,如此下去,第n次還清。 ∴共有5+10=15(種)情況 51. 二項(xiàng)式定理 性質(zhì): (3)最值:n為偶數(shù)時(shí),n+1為奇數(shù),中間一項(xiàng)的二項(xiàng)式系數(shù)最大且為第 表示) 52. 你對(duì)隨機(jī)事件之間的關(guān)系熟悉嗎? 的和(并)。 (1)從中任取2件都是次品; (2)從中任取5件恰有2件次品; (3)從中有放回地任取3件至少有2件次品; 解析:有放回地抽取3次(每次抽1件),∴n=103 而至少有2件次品為“恰有2次品”和“三件都是次品” (4)從中依次取5件恰有2件次品。 要熟悉樣本頻率直方圖的作法: (2)決定組距和組數(shù); (3)決定分點(diǎn); (4)列頻率分布表; (5)畫(huà)頻率直方圖。 (6)并線向量(平行向量)——方向相同或相反的向量。 57. 平面向量的數(shù)量積 數(shù)量積的幾何意義: (2)數(shù)量積的運(yùn)算法則 [練習(xí)] 答案: 答案:2 答案: 58. 線段的定比分點(diǎn) ※. 你能分清三角形的重心、垂心、外心、內(nèi)心及其性質(zhì)嗎? 59. 立體幾何中平行、垂直關(guān)系證明的思路清楚嗎? 平行垂直的證明主要利用線面關(guān)系的轉(zhuǎn)化: 線面平行的判定: 線面平行的性質(zhì): 三垂線定理(及逆定理): 線面垂直: 面面垂直: 60. 三類角的定義及求法 (1)異面直線所成的角θ,0176。 (三垂線定理法:A∈α作或證AB⊥β于B,作BO⊥棱于O,連AO,則AO⊥棱l,∴∠AOB為所求。[練習(xí)] (1)如圖,OA為α的斜線OB為其在α內(nèi)射影,OC為α內(nèi)過(guò)O點(diǎn)任一直線。PD⊥面ABCD,且PD=AD,求面PAB與面PCD所成的銳二面角的大小。 62. 你是否準(zhǔn)確理解正棱柱、正棱錐的定義并掌握它們的性質(zhì)? 正棱柱——底面為正多邊形的直棱柱 正棱錐——底面是正多邊形,頂點(diǎn)在底面的射影是底面的中心。正四面體的外接球半徑R與內(nèi)切球半徑r之比為R:r=3:1。(求交點(diǎn),弦長(zhǎng),中點(diǎn),斜率,對(duì)稱存在性問(wèn)題都在△≥0下進(jìn)行。(x39。 (直接法、定義法、轉(zhuǎn)移法、參數(shù)法) 76. 對(duì)線性規(guī)劃問(wèn)題:作出可行域,作出以目標(biāo)函數(shù)為截距的直線,在可行域內(nèi)平移直線,求出目標(biāo)函數(shù)的最值。)為A關(guān)于點(diǎn)M的對(duì)稱點(diǎn)。 72. 有關(guān)中點(diǎn)弦問(wèn)題可考慮用“代點(diǎn)法”。 直線與圓相交時(shí),注意利用圓的“垂徑定理”。為此,要找球心角! (3)如圖,θ為緯度角,它是線面成角;α為經(jīng)度角,它是面面成角。 將空間距離轉(zhuǎn)化為兩點(diǎn)的距離,構(gòu)造三角形,解三角形求線段的長(zhǎng)(如:三垂線定理法,或者用等積轉(zhuǎn)化法)。 ①求BD1和底面ABCD所成的角; ②求異面直線BD1和AD所成的角; ③求二面角C1—BD1—B1的大小。 ②證明其符合定義,并指出所求作的角。 (2)直線與平面所成的角θ,0176。 (7)向量的加、減法如圖: (8)平面向量基本定理(向量的分解定理) 的一組基底。 56. 你對(duì)向量的有關(guān)概念清楚嗎? (1)向量——既有大小又有方向的量。 54. 抽樣方法主要有:簡(jiǎn)單隨機(jī)抽樣(抽簽法、隨機(jī)數(shù)表法)常常用于總體個(gè)數(shù)較少時(shí),它的特征是從總體中逐個(gè)抽??;系統(tǒng)抽樣,常用于總體個(gè)數(shù)較多時(shí),它的主要特征是均衡成若干部分,每部分只取一個(gè);分層抽樣,主要特征是分層按比例抽樣,主要用于總體中有明顯差異,它們的共同特征是每個(gè)個(gè)體被抽到的概率相等,體現(xiàn)了抽樣的客觀性和平等性。 (6)對(duì)立事件(互逆事件): (7)獨(dú)立事件:A發(fā)生與否對(duì)B發(fā)生的概率沒(méi)有影響,這樣的兩個(gè)事件叫做相互獨(dú)立事件。 (2)排列:從n個(gè)不同元素中,任取m(m≤n)個(gè)元素,按照一定的順序排成一
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)教案相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1