【摘要】二次函數(shù)絕對值的問題練習(xí)及答案二次函數(shù)是最簡單的非線性函數(shù)之一,而且有著豐富的內(nèi)容,它對近代數(shù)仍至現(xiàn)代數(shù)學(xué)影響深遠(yuǎn),這部分內(nèi)容為歷年來高考數(shù)學(xué)考試的一項重點考查內(nèi)容,經(jīng)久不衰,以它為核心內(nèi)容的高考試題,形式上也年年有變化,此類試題常常有絕對值,充分運用絕對值不等式及二次函數(shù)、二次方程、二次不等式的聯(lián)系,往往采用直接法,利用絕對值不等式的性質(zhì)進(jìn)行適當(dāng)放縮,常用數(shù)形結(jié)合
2025-06-23 13:56
【摘要】二次函數(shù)的應(yīng)用第1課時二次函數(shù)的應(yīng)用中的面積、利潤最值問題滬科版九年級數(shù)學(xué)上冊狀元成才路狀元成才路新課導(dǎo)入某水產(chǎn)養(yǎng)殖戶用長40m的圍網(wǎng),在水庫中圍一塊矩形的水面,投放魚苗.要使圍成的水面面積最大,則它的邊長應(yīng)是多少米?狀元成才路狀元成才路解:設(shè)圍成的矩形水面的一邊長為xm,那
2025-03-13 02:03
【摘要】(1)配方法(2)換元法(3)圖象法(4)單調(diào)性法(5)不等式法(6)導(dǎo)數(shù)法(7)數(shù)形結(jié)合法(8)判別式法(9)三角函數(shù)有界性一、求函數(shù)最值的常用方法:最值問題是數(shù)學(xué)的重要內(nèi)容之一,是解決數(shù)學(xué)應(yīng)用的基礎(chǔ)。二、典型例題例1:對每個實數(shù)x,設(shè)f(x)是y=2
2024-11-07 00:41
【摘要】2020年9月15日給定二次函數(shù):y=2x2-8x+1,我們怎么求它的最值。Oxy2-7解:y=2(x-2)2-7,由圖象知,當(dāng)x=2時,y有最小值,ymin=f(2)=-7,沒有最大值。小結(jié)、二次函數(shù)y=ax2+bx+c(a≠0)中,y取得最小值當(dāng)自變量x=
2024-11-11 21:11
【摘要】二次函數(shù)---面積問題的研究講師:段老師首先仔細(xì)觀察下列常見圖形,說出如何求出各圖中陰影部分圖形的面積.在以上問題的分析中研究思路為:(1)分析圖形的成因(2)識別圖形的形狀(3)找出圖形的計算方法?間接求面積法?直線切割法?函數(shù)綜合法注意:(1)取三角形的底邊時一般以坐標(biāo)軸上線段或以與軸平行的線段為底邊.(2)三邊均不在
2025-03-24 06:28
【摘要】 優(yōu)能中學(xué)教育學(xué)習(xí)中心U-CANLearningcentreofmiddlesch
2025-05-31 22:43
【摘要】二次函數(shù)在閉區(qū)間上的最值一、知識要點:一元二次函數(shù)的區(qū)間最值問題,核心是函數(shù)對稱軸與給定區(qū)間的相對位置關(guān)系的討論。一般分為:對稱軸在區(qū)間的左邊,中間,右邊三種情況.設(shè),求在上的最大值與最小值。分析:將配方,得頂點為、對稱軸為當(dāng)時,它的圖象是開口向上的拋物線,數(shù)形結(jié)合可得在[m,n]上的最值:(1)當(dāng)時,的最小值是的最大值是中的較大者。(2)當(dāng)時若,由在上是增函
2025-06-18 20:13
【摘要】第5章二次函數(shù)用二次函數(shù)解決問題第1課時利用二次函數(shù)解決銷售利潤最值問題目標(biāo)突破總結(jié)反思第5章二次函數(shù)知識目標(biāo)用二次函數(shù)解決問題知識目標(biāo)1.通過建立二次函數(shù)模型,利用二次函數(shù)性質(zhì)解決實際生活中利潤的最大(小)值問題.2.通過對函數(shù)圖像的分析,能用二次函數(shù)解決利潤與圖像信息的相
2025-06-17 23:51
【摘要】......專題三:含絕對值函數(shù)的最值問題1.已知函數(shù)(),若對任意的,不等式恒成立,求實數(shù)的取值范圍.不等式化為即:(*)對任意的恒成立因為,所以分如下情況討論:[來源:學(xué)科網(wǎng)ZXXK]①當(dāng)時,不等式(*)②當(dāng)
2025-03-24 23:42
【摘要】句容市天王中學(xué)張映明y=(a、b、C是常數(shù),且)的函數(shù)叫做y關(guān)于x的二次函數(shù)。ax2+bx+ca≠0y=ax&
2024-11-12 00:08
【摘要】成都市中考壓軸題(二次函數(shù))精選【例一】.如圖,拋物線y=ax2+c(a≠0)經(jīng)過C(2,0),D(0,﹣1)兩點,并與直線y=kx交于A、B兩點,直線l過點E(0,﹣2)且平行于x軸,過A、B兩點分別作直線l的垂線,垂足分別為點M、N.(1)求此拋物線的解析式;(2)求證:AO=AM;(3)探究:①當(dāng)k=0時,直線y=kx與x軸重合,求出此時的值;②試說明無論k取何值,
2025-04-04 04:25
【摘要】第1章二次函數(shù)1.4二次函數(shù)的應(yīng)用第1課時利用二次函數(shù)解決面積最值問題筑方法勤反思第1章二次函數(shù)學(xué)知識學(xué)知識二次函數(shù)的應(yīng)用知識點一求二次函數(shù)的最大值或最小值二次函數(shù)y=ax2+bx+c(a≠0),當(dāng)x=________時,函數(shù)有最值,最值為______
2025-06-16 23:28
【摘要】二次函數(shù)中絕對值問題的求解策略二次函數(shù)是高中函數(shù)知識中一顆璀璨的“明珠”,而它與絕對值知識的綜合,往往能夠演繹出一曲優(yōu)美的“交響樂”,故成為高考“新寵”。二次函數(shù)和絕對值所構(gòu)成的綜合題,由于知識的綜合性、題型的新穎性、解題方法的靈活性、思維方式的抽象性,學(xué)習(xí)解題時往往不得要領(lǐng),現(xiàn)從求解策略出發(fā),對近年來各類考試中的部分相關(guān)考題,進(jìn)行分類剖析,歸納出一般解題思考方法。一、適時用分類,討
2025-04-04 04:23
【摘要】........已知,拋物線交軸于點A、B,交軸于點C.1、線段最值①線段和最小點P是拋物線對稱軸上一動點,當(dāng)點P坐標(biāo)為多少時,PA+PC值最小.②線段差最大點Q是拋物線對稱軸上一動點,當(dāng)點Q坐標(biāo)為多少時,|QA-QC|值最大
2025-03-24 06:25
【摘要】杭州大石教育暑假班初三數(shù)學(xué)1/42022年暑期班初三數(shù)學(xué)第2講二次函數(shù)的最值★二次函數(shù)y=ax2+bx+c頂點坐標(biāo)是,對稱軸是,,當(dāng)a>0
2025-01-07 16:45