freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

《初等分析優(yōu)化模型》ppt課件(文件)

 

【正文】 ) 設(shè)每次訂貨量為 Q ,由于最大缺貨量為 S,則最高庫(kù)存量為 Q S,故不缺貨時(shí)期內(nèi)的平均存貯量為 (Q S)/2,于是,周期 T 內(nèi)的平均存貯量 = (Q S)t1/2T。故單位時(shí)間的總費(fèi)用TC為: 2231222)( cQScQDcQSQTC ????允許缺貨的 經(jīng)濟(jì)訂購(gòu)批量模型( 4) 使 TC達(dá)最小值的最佳訂購(gòu)量 訂購(gòu)量為 Q* 時(shí)的最大缺貨量 單位時(shí)間的最低總費(fèi)用 訂購(gòu)量為 Q* 時(shí)的最大存貯量為 每個(gè)周期 T所需時(shí)間 顯然, 時(shí), 允許缺貨 訂購(gòu)模型趨于經(jīng)濟(jì)訂購(gòu)批量模型。生產(chǎn)停止時(shí),靠存貯量來(lái)滿足需要。 所謂貨物單價(jià)有 “ 折扣 ” 是指供應(yīng)方采取的一種鼓勵(lì)用戶多訂貨的優(yōu) 惠政策 , 即根據(jù)訂貨量的大小規(guī)定不同的貨物單價(jià) 。 DccQDQcTC ??? 3121這種存貯模型的 特點(diǎn) : 1. 需求率 (單位時(shí)間的需求量)為 d; 2. 無(wú)限供貨率(單位時(shí)間內(nèi)入庫(kù)的貨物數(shù)量) ; 3. 不允許缺貨; 4. 單位貨物單位時(shí)間的存貯費(fèi)為 c1 ; 5. 每次的訂貨費(fèi)為 c3 ; 6. 單位貨物的進(jìn)價(jià)成本即貨物單價(jià)為 c ; 7. 每期初進(jìn)行補(bǔ)充,即期初存貯量為 Q。為此,我們需要先找出這些點(diǎn)。 所謂單一周期存貯是指在產(chǎn)品訂貨、生產(chǎn)、存貯、銷(xiāo)售這一周期的最后階段或者把產(chǎn)品按正常價(jià)格全部銷(xiāo)售完畢,或者把按正常價(jià)格未能銷(xiāo)售出去的產(chǎn)品削價(jià)銷(xiāo)售出去,甚至扔掉。因此,我們也可以把它看成是一個(gè)單一周期的存貯問(wèn)題,只不過(guò)每天都要作出每天的存貯決策。如果 訂貨量 Q 選得過(guò)大,那么報(bào)童就會(huì)因不能 售出報(bào)紙?jiān)斐蓳p失; 如果 訂貨量 Q 選得過(guò)小,那么報(bào)童就要因缺貨失去銷(xiāo)售機(jī)會(huì)而 造成機(jī)會(huì)損失。 1)(0 ?? ? ?d dP銷(xiāo)售量(百?gòu)垼? 5 6 7 8 9 10 11 概率 P(d ) )()()(010??????????QdQddPhk kdP需求為隨機(jī)的單一周期存貯模型( 3) 解:要使其賺錢(qián)的期望值最大,也就是使其因售不出報(bào)紙的損失和因缺貨失去銷(xiāo)售機(jī)會(huì)的損失的期望值之和為最小。每售出一本可盈利 20元,如果年前不能售出,必須削價(jià)處理??蛻裘扛袅鶄€(gè)月來(lái)購(gòu)買(mǎi)一次,每次購(gòu)買(mǎi)的數(shù)量是一個(gè)隨機(jī)變量,通過(guò)對(duì)客戶以往需求的統(tǒng)計(jì)分析,知道這個(gè)隨機(jī)變量服從以均值 ? =1000(公斤),方差 ? =100 (公斤)的正態(tài)分布。一旦化工公司由于高估了需求,供大于求,由于這種產(chǎn)品在兩個(gè)月內(nèi)要老化,不能存貯至六個(gè)月后再供應(yīng)給客戶,只能以每公斤 5元的價(jià)格處理掉。 下面我們給出求訂貨量和再訂貨點(diǎn)的最優(yōu)解的近似方法,而精確的數(shù)學(xué)公式太復(fù)雜,這里不作介紹。 存貯的 ( r, Q ) 策略 r 為最低存貯量,即訂貨點(diǎn),對(duì) 庫(kù)存量隨時(shí)進(jìn)行檢查, 當(dāng) H r 時(shí)不補(bǔ)充;當(dāng) H ≤ r 時(shí)進(jìn)行補(bǔ)充,每次補(bǔ)充的數(shù)量為 Q 。 公司規(guī)定的服務(wù)水平為允許由于存貯量不夠造成的缺貨情況為 5%。 在這樣的存貯策略下,在訂貨期有 95%的概率不會(huì)出現(xiàn)缺貨,有 5%的概率會(huì)出現(xiàn)缺貨。一旦確定了 M, 也就確定了訂貨量 Q 如下所示: Q = M ? H, 式中 H 為檢查時(shí)的庫(kù)存量。從圖上可知這 M單位的產(chǎn)品要維持一個(gè)檢查周期再加上一個(gè)訂貨期的消耗,所以我們可以從一個(gè)檢查周期加上一個(gè)訂貨期的需求的概率分布情況,結(jié)合規(guī)定的服務(wù)水平來(lái)制定存貯水平 M,以下我們舉例說(shuō)明?,F(xiàn)要求對(duì)其中兩種商品制定出各自的存貯水平。根據(jù)以往的數(shù)據(jù),通過(guò)統(tǒng)計(jì)分析,商品 A每 14天需求服從均值 μ A=550條,均方差 σ A=85條的正態(tài)分布,商品 B每 14天需求服從均值 μ B=5300包,均方差 σ B=780包的正態(tài)分布。這種模型需要更多的數(shù)學(xué)知識(shí),在本課程中不作介紹。圖 1211( a)顯示了缺貨概率為 %時(shí)的存貯補(bǔ)充水平 MA,圖 1211(b)顯示了缺貨概率為 15%時(shí)的存貯補(bǔ)充水平 MB。一旦缺貨,顧客不會(huì)在商店里購(gòu)買(mǎi)另一種品牌的煙,而去另外的商店購(gòu)買(mǎi),故商店規(guī)定其缺貨的概率為 %。又因?yàn)槠渲泻芏嗌唐房梢詮耐粋€(gè)廠家或批發(fā)公司進(jìn)貨,這樣也節(jié)約了訂貨費(fèi)用。 三、需求為隨機(jī)變量的定期檢查存貯量模型 需求為隨機(jī)變量的定期檢查庫(kù)存量的存貯模型處理存貯問(wèn)題的典型方式如圖 1210所示。箱 )( 250442022213 ??????cDcQ.??????? ?? ? ?r.??? ?r需求為隨機(jī)變量的訂貨批量、再訂貨點(diǎn)模型( 3) 需求為隨機(jī)變量的定期檢查存貯量模型是另一種處理多周期的存貯問(wèn)題的模型。已知每年的平均需求量 D =8 50 52 = 44200 箱 /年, c1 = 元 /箱年, c3 = 250元,得 需求為隨機(jī)變量的訂貨批量、再訂貨點(diǎn)模型( 2) 于是,每年平均約訂貨 44200/1517≈29次。由于公司與廠家距離較遠(yuǎn),雙方合同規(guī)定,在公司填寫(xiě)訂貨單后一個(gè)星期廠家把地磚運(yùn)到公司。 2. 根據(jù)具體情況制定出服務(wù)水平,即制定在 m天里出現(xiàn)缺貨的概率 ?,也即不 出現(xiàn)缺貨的概率為 1??。 .????????? ?? ???Q.)( 公斤??????Q 4)( ?????? ? hk kQdP,??????Q)( ?? ?QdP需求為隨機(jī)的單一周期存貯模型( 8) 本節(jié)介紹需求為隨機(jī)變量的多周期存貯模型。合同要求化工公司必須按時(shí)提供客戶的需求。根據(jù)以往的經(jīng)驗(yàn),市場(chǎng)的需求量近似服從均勻分布,其最低需求為 550本,最高需求為 1100本,該書(shū)店應(yīng)訂購(gòu)多少新年掛歷,使其損失期望值為最?。? 解:由題意知 掛歷的需求量是服從區(qū)間 [550, 1100]上的均勻分布的隨機(jī)變量, k = 20, h = 16,則其需求量小于 Q* 的概率為 則由公式 ( 12. 44)得 由此求得 Q* = 856(本),并從 5/9可知,這時(shí)有 5/9的概率掛歷有剩余,有 1- 5/9=4/9的概率掛歷脫銷(xiāo)。 . 15 ???? hk k)7()6()5()(70?????????PPPdPd)8()7()6()5()(80???????????PPPPdPd??????? 8070)()(dddPhk kdP需求為隨機(jī)的單一周期存貯模型( 4) 我們可以把公式 ( 12. 42)改寫(xiě)成 公式 ( 12. 43)既適用于離散型隨機(jī)變量也適用于連續(xù)型隨機(jī)變量。每日售出該報(bào)紙份數(shù)的 概率 P(d )根據(jù)以往經(jīng)驗(yàn)如下表所示。 報(bào)童每售出一份報(bào)紙賺 k 元,如果報(bào)紙未能 售出,每份賠 h 元,問(wèn) 報(bào)童每日最好準(zhǔn)備多少報(bào)紙? 這就是一個(gè) 需求量為隨機(jī) 變量 的單一周期的存貯問(wèn)題。季節(jié)性和易腐保鮮產(chǎn)品,例如季節(jié)性的服裝、掛歷、麥當(dāng)勞店里的漢堡包等都是按單一周期的方法處理的。但是,在現(xiàn)實(shí)世界中,更多的情況卻是需求為一個(gè)隨機(jī)變量。 經(jīng)濟(jì)訂貨批量折扣模型( 2) 下圖是 n = 3時(shí) c(Q) 和 TC 的圖形表示: 當(dāng)訂貨量為 Q∈ [Qi 1 , Qi ) 時(shí),由于 c(Q)= ki ,則有 由此可見(jiàn),總費(fèi)用 TC 也是 Q 的分段函數(shù),具體表示如下: O Q Q1 Q2 k3 k2 c(Q) k1 O Q1 Q2 Q Q3 TC TC1 TC2 TC3 niDkcQDQcTC iii ,2,121 3)(1 ?????Q3 經(jīng)濟(jì)訂貨批量折扣模型( 3) TC(Q) = TCi, Q∈ [Qi 1 , Qi ) , i = 1, 2, … , n。 我們常見(jiàn)的所謂零售價(jià) 、 批發(fā)價(jià) 、 和出廠價(jià) , 就是供應(yīng)方根據(jù)貨物 的訂貨量而制訂的不同的貨物單價(jià) 。 允許缺貨的經(jīng)濟(jì)生產(chǎn)批量模型( 2) 單位時(shí)間的總費(fèi)用 TC =(單位時(shí)間的存貯費(fèi)) +(單位時(shí)間的生產(chǎn)準(zhǔn)備費(fèi)) + (單位時(shí)間的缺貨費(fèi)) =(平均存貯量) c1 +(單位時(shí)間的生產(chǎn)次數(shù)) c3 + (平均缺貨量) c2 ?????????????????????????????????????pdQcSQDcpdQcSpdQTC1212122312允許缺貨的經(jīng)濟(jì)生產(chǎn)批量模型( 3) 使單
點(diǎn)擊復(fù)制文檔內(nèi)容
教學(xué)課件相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1