freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

南寧全國各地備戰(zhàn)中考模擬試卷數(shù)學分類:二次函數(shù)綜合題匯編(文件)

2025-03-31 22:10 上一頁面

下一頁面
 

【正文】 對稱得到a+nm=ma,從而確定a、m、n之間的關系;(3)根據(jù)a=m得到A(m,0)代入y=(xm)2m2+3得0=(mm)2m2+3,求得m的值即可確定a的值.試題解析:(1)①∵a=1,∴A(1,0),代入y=x22mx+3得12m+3=0,解得m=2,∴y=x24x+3;②在y=x24x+3中,當y=0時,有x24x+3=0可得x=1或x=3,∴A(1,0)、B(3,0), ∴AB=2再根據(jù)解析式求出C點坐標為(0,3), ∴OC=3,△ABC的面積=23=3;(2)∵y=x22mx+3=(xm)2m2+3,∴對稱軸為直線x=m, ∵二次函數(shù)y=x22mx+3的圖象與x軸交于點A和點B∴點A和點B關于直線x=m對稱, ∴a+nm=ma, ∴a=m;(3)y=x22mx+3(m>)化為頂點式為y=(xm)2m2+3(m>)①當a為整數(shù),因為n>0且n為整數(shù) 所以a+n是整數(shù), ∵線段AB(包括A、B)上有且只有三個點的橫坐標是整數(shù), ∴n=2, ∴a=m1,∴A(m1,0)代入y=(xm)2m2+3得(xm)2m2+3=0,∴m24=0,∴m=2,m=2(舍去), ∴a=21=1, ②當a不是整數(shù),因為n>0且n為整數(shù) 所以a+n不是整數(shù), ∵線段AB(包括A、B)上有且只有三個點的橫坐標是整數(shù), ∴n=3, ∴a=m∴A(m,0)代入y=(xm)2m2+3得0=(mm)2m2+3,∴m2=,∴m=,m=(舍去),∴a=?,綜上所述:a=1或a=?.考點:二次函數(shù)綜合題.8.拋物線L:y=﹣x2+bx+c經(jīng)過點A(0,1),與它的對稱軸直線x=1交于點B.(1)直接寫出拋物線L的解析式;(2)如圖1,過定點的直線y=kx﹣k+4(k<0)與拋物線L交于點M、N.若△BMN的面積等于1,求k的值;(3)如圖2,將拋物線L向上平移m(m>0)個單位長度得到拋物線L1,拋物線L1與y軸交于點C,過點C作y軸的垂線交拋物線L1于另一點D.F為拋物線L1的對稱軸與x軸的交點,P為線段OC上一點.若△PCD與△POF相似,并且符合條件的點P恰有2個,求m的值及相應點P的坐標.【答案】(1)y=﹣x2+2x+1;(2)3;(3)當m=2﹣1時,點P的坐標為(0,)和(0,);當m=2時,點P的坐標為(0,1)和(0,2).【解析】【分析】(1)根據(jù)對稱軸為直線x=1且拋物線過點A(0,1)利用待定系數(shù)法進行求解可即得;(2)根據(jù)直線y=kx﹣k+4=k(x﹣1)+4知直線所過定點G坐標為(1,4),從而得出BG=2,由S△BMN=S△BNG﹣S△BMG=BG?xN﹣BG?xM=1得出xN﹣xM=1,聯(lián)立直線和拋物線解析式求得x=,根據(jù)xN﹣xM=1列出關于k的方程,解之可得;(3)設拋物線L1的解析式為y=﹣x2+2x+1+m,知C(0,1+m)、D(2,1+m)、F(1,0),再設P(0,t),分△PCD∽△POF和△PCD∽△POF兩種情況,由對應邊成比例得出關于t與m的方程,利用符合條件的點P恰有2個,結合方程的解的情況求解可得.【詳解】(1)由題意知,解得:,∴拋物線L的解析式為y=﹣x2+2x+1;(2)如圖1,設M點的橫坐標為xM,N點的橫坐標為xN,∵y=kx﹣k+4=k(x﹣1)+4,∴當x=1時,y=4,即該直線所過定點G坐標為(1,4),∵y=﹣x2+2x+1=﹣(x﹣1)2+2,∴點B(1,2),則BG=2,∵S△BMN=1,即S△BNG﹣S△BMG=BG?(xN﹣1)BG?(xM1)=1,∴xN﹣xM=1,由得:x2+(k﹣2)x﹣k+3=0,解得:x==,則xN=、xM=,由xN﹣xM=1得=1,∴k=177。點C落在拋物線上的點P處,∴∠PDC=90176。∠BOF=30176。點C坐標為(,).點睛:本題考查綜合考查用待定系數(shù)法求二次函數(shù)解析式,拋物線的增減性.解答問題時注意線段最值問題的轉化方法.?!唷螦BO=30176。AO=3,BO=2,Q(t,3),P(t,),①當2<t≤6時,AQ=t,PQ=,若:△AOB∽△AQP,則:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,則:,即:,∴t=0(舍)或t=2(舍),②當t>6時,AQ′=t,PQ′=,若:△AOB∽△AQP,則:,即:,∴t=0(舍),或t=,若△AOB∽△PQA,則:,即:,∴t=0(舍)或t=14,∴t=或t=或t=14.考點:二次函數(shù)綜合題.15.如圖,拋物線y=ax2+bx經(jīng)過△OAB的三個頂點,其中點A(1,),點B(3,﹣),O為坐標原點.(1)求這條拋物線所對應的函數(shù)表達式;(2)若P(4,m),Q(t,n)為該拋物線上的兩點,且n<m,求t的取值范圍;(3)若C為線段AB上的一個動點,當點A,點B到直線OC的距離之和最大時,求∠BOC的大小及點C的坐標.【答案】(1);(2)t>4;(3)∠BOC=60176。點C落在拋物線上的點P處.(1)求這條拋物線的表達式;(2)求線段CD的長;(3)將拋物線平移,使其頂點C移到原點O的位置,這時點P落在點E的位置,如果點M在y軸上,且以O、D、E、M為頂點的四邊形面積為8,求點M的坐標.【答案】(1)拋物線解析式為y=﹣x2+2x+;(2)線段CD的長為2;(3)M點的坐標為(0,)或(0,﹣).【解析】【分析】(1)利用待定系數(shù)法求拋物線解析式;(2)利用配方法得到y(tǒng)=﹣(x﹣2)2+,則根據(jù)二次函數(shù)的性質(zhì)得到C點坐標和拋物線的對稱軸為直線x=2,如圖,設CD=t,則D(2,﹣t),根據(jù)旋轉性質(zhì)得∠PDC=90176。∴∠CBD=90176。【答案】 ;;點的坐標是.【解析】【分析】(1)設頂點式并代入已知點即可;(2)令y=0,求出A、B和C點坐標,運用三角形面積公式計算即可;(3)假設存在這樣的點,過點作軸于點,交于點,線段PF的長度即為兩函數(shù)值之差,將的面積計算拆分為即可.【詳解】設此函數(shù)的解析式為,∵函數(shù)圖象頂點為,∴,又∵函數(shù)圖象經(jīng)過點,∴解得,∴此函數(shù)的解析式為,即;∵點是函數(shù)的圖象與軸的交點,∴點的坐標是,又當時,有,解得,∴點的坐標是,則;假設存在這樣的點,過點作軸于點,交于點.設,則,設直線的解析式為,∵直線過點,∴,解得,∴直線的解析式為,∴點的坐標為,則,∴,∴當時,有最大值,此時點的坐標是.【點睛】本題第3問中將所求三角形拆分為兩個小三角形進行求解,從而將面積最大的問題轉化為PF最大進行理解.
點擊復制文檔內(nèi)容
合同協(xié)議相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1