freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

完全平方公式(教案1)-wenkub

2024-11-04 22 本頁(yè)面
 

【正文】 =a22ab+b2二、總結(jié)完全平方公式的特點(diǎn)介紹助記口訣:首平方,尾平方,首尾兩倍乘積放中央。五、教法學(xué)法多媒體輔助教學(xué),將知識(shí)形象化、生動(dòng)化,激發(fā)學(xué)生的興趣。過程與方法經(jīng)歷探索完全平方公式的過程,進(jìn)一步發(fā)展符號(hào)感和推理能力。作為一名數(shù)學(xué)老師,不僅要傳授給學(xué)生數(shù)學(xué)知識(shí),更重要的是傳授給學(xué)生數(shù)學(xué)思想、數(shù)學(xué)意識(shí),因此本節(jié)課在教學(xué)中力圖向?qū)W生滲透換元思想和數(shù)形結(jié)合思想 。師生行為 的思想方法:特例—?dú)w納—猜想—驗(yàn)證一用數(shù)學(xué)符號(hào)表示. 的設(shè)置是由淺入深,讓 每個(gè)學(xué)生感到學(xué)有所成,感,親身 ,讓學(xué)生掌握。部分學(xué)生板演,然后學(xué)生交流分析過程:此題需靈活運(yùn)用完全平方公式?!坷? 用完全平方公式計(jì)算:99 練習(xí)五:(1)98(2) 222【設(shè)計(jì)意圖:開闊學(xué)生思維,對(duì)公式的認(rèn)識(shí)獲得升華】四、歸納總結(jié),反思新知這節(jié)課我們學(xué)習(xí)了完全平方公式,分別是:(a+b)=a+2ab+b 222(ab)=a2ab+b運(yùn)用公式時(shí)要注意:(1)a,b可以指數(shù),單項(xiàng)式或多項(xiàng)式(2)右邊都含有是_____________,不同的是________ 222五、布置作業(yè)書本P156 復(fù)習(xí)鞏固 第二題第二篇:完全平方公式教案一、復(fù)習(xí)舊知探究,計(jì)算下列各式,你能發(fā)現(xiàn)什么規(guī)律?(1)(p+1)2 =(p+1)(p+1)=_________;(2)(m+2)2=(m+2)(m+2)=_________;(3)(p-1)2 =(p-1)(p-1)=_________;(4)(m-2)2=(m-2)(m-2)=_________.答案:(1)p2+2p+1;(2)m2+4m+4;(3)p2-2p+1;(4)m2-4m+4.二、探究新知:(a+b)2 和(a-b)2 ;并說(shuō)明發(fā)現(xiàn)的規(guī)律。難點(diǎn):判別要計(jì)算的代數(shù)式是哪兩個(gè)數(shù)的和(或差)的平方。經(jīng)歷完全平方公式的探求過程,熟悉完全平方公式的特征,會(huì)運(yùn)用完全平方公式解決一些簡(jiǎn)單問題。使學(xué)生體會(huì)數(shù)、形結(jié)合的優(yōu)勢(shì),進(jìn)一步發(fā)展符號(hào)感和推理能力,培養(yǎng)學(xué)生數(shù)學(xué)建模的思想。教學(xué)過程:一、創(chuàng)設(shè)情景,引入新課探究1 1.口算:(1)(1+2)=____(2)(2+4)=____(3)(3+5)=____221222+2=____22(1+2)=1+2對(duì)嗎?22222+4=____22(2+4=2+4對(duì)嗎?2223+5=____2(3+5)=3+5對(duì)嗎?222老師提問:(a+b)=a+b 成立嗎?學(xué)生容易得出結(jié)論:不成立,那么(a+b)2=?,引出新課:?jiǎn)栴}1:有一個(gè)邊長(zhǎng)為a米的正方形廣場(chǎng),現(xiàn)要擴(kuò)建該廣場(chǎng),要求將其邊長(zhǎng)增加b米,試問擴(kuò)建的正方形廣場(chǎng)的面積有多大?(1)如圖:四塊面積分別是______、______、______、______(2)我們可以從兩種方式計(jì)算總面積:① 看成是邊長(zhǎng)為______的大正方形,S=__________ ② 看成是四塊小面積之和,S=___________________ 得出結(jié)論:(a+b)2=a+2ab+b22【設(shè)計(jì)意圖:使學(xué)生從幾何的角度得到公式】引導(dǎo)學(xué)生:用乘方的意義和多項(xiàng)式的乘法去理解公式【設(shè)計(jì)意圖:使學(xué)生從代數(shù)的角度得到公式】探究2 1.口算:(1)(12)=____(2)(24)=____2122222=____=____22(12)2=12對(duì)嗎?22242(242)=224對(duì)嗎?2老師提問,學(xué)生猜想:(ab)=ab 成立嗎? 學(xué)生容易得出結(jié)論:不成立,那么(ab)=? 引導(dǎo)學(xué)生從代數(shù)的角度看:2(ab)2 =()()= _____________= _____________ 得出結(jié)論:(ab)2=a2ab+b二、小結(jié)歸納:(a+b)=a+2ab+b(ab)=a2ab+b對(duì)比兩個(gè)公式的異同【設(shè)計(jì)意圖:學(xué)生能抓住公式的特征,加深對(duì)公式的理解】 222222三、范例解析,鞏固雙基例1 計(jì)算:(a+1)2 練習(xí)一:填空。(a+b)2=(a+b)(a+b)= a(a+b)+b(a+b)=a2+ab+ab+b2 =a2+2ab+b2.(a-b)2=(a-b)(a-b)=a(a-b)-b(a-b)=a2-ab-ab+b2=a2-2ab+b2. 兩數(shù)和(或差)的平方,等于它們的平方和,加(或減)它們的積的2倍,即學(xué)生利用多項(xiàng)式與多項(xiàng)式相乘的法則進(jìn)行計(jì)算,觀察計(jì)算結(jié)果,尋找一般性的結(jié)論,并進(jìn)行歸納,允許學(xué)生之間互相補(bǔ)充,教師不急于概括.這里是對(duì)前邊進(jìn)行的運(yùn)算的復(fù)習(xí),目的是讓學(xué)生通過觀察、歸納,鼓勵(lì)他們發(fā)現(xiàn)這個(gè)公式的一些特點(diǎn),如公式左右邊的特征,便于進(jìn)一步應(yīng)用公式計(jì)算公式的推導(dǎo)既是對(duì)上述特例的概括,更是從特殊到一般的歸納證明,在此應(yīng)注意向?qū)W生滲透數(shù)學(xué) 教學(xué)程序及教學(xué)內(nèi)容 師生行為 設(shè)計(jì)意圖(a+b)2=a2+2ab+b2,(a-b)2=a2-2ab+b2 3.歸納完全平方公式的特征:(1)左邊為兩個(gè)數(shù)的和或差的平方;(2)右邊為兩個(gè)數(shù)的平方和再加或減這兩個(gè)數(shù)的積的2倍. 4.【例1】運(yùn)用完全平方公式計(jì)算:⑴ ; ⑵ 【點(diǎn)撥】展開后的式子有三項(xiàng),.利用完全平方公式計(jì)算:(1)(-x+2y)2;(2)(-x-y)2;(3)(x+y-z)2;解析:(1)題可轉(zhuǎn)化為(2y-x)2或(x-2y)2,再運(yùn)用完全平方公式;(2)題可以轉(zhuǎn)化為(x+y)2,利用和的完全平方公式;(3)題利用加法結(jié)合律變形為[(x+y)-z]2,或[x+(y-z)][(x-z)+y]2,再用完全平方公式計(jì)算; 思考⑴(a+b)2與(-a-b)2相等嗎?為什么? ⑵(a-b)2與(b-a)2相等嗎?為什么? ⑶(a-b)2與a2-b2相等嗎?為什么? 6.添括號(hào):∵4+5+2與4+(5+2)的值相等。學(xué)生思考,教師點(diǎn)撥。第三篇:完全平方公式教案完全平方公式教案1一、教材分析本節(jié)內(nèi)容在全書及章節(jié)的地位:《完全平方公式》是人教版數(shù)學(xué)八年級(jí)上冊(cè)第十四章的內(nèi)容。二、學(xué)情分析學(xué)生剛學(xué)過多項(xiàng)式的乘法,已具備學(xué)習(xí)和運(yùn)用完全平方公式的知識(shí)結(jié)構(gòu),但是由于學(xué)生初步學(xué)習(xí)乘法公式,認(rèn)清公式結(jié)構(gòu)并不容易,因此教學(xué)時(shí)要循序漸進(jìn)。情感態(tài)度與價(jià)值觀對(duì)學(xué)生觀察能力、概括能力、語(yǔ)言表述能力的培養(yǎng),以及數(shù)學(xué)思想的滲透。教學(xué)中逐步設(shè)置疑問,引導(dǎo)學(xué)生動(dòng)手、動(dòng)腦、動(dòng)口,積極參與知識(shí)全過程。三、課堂練習(xí)改錯(cuò)練習(xí)例題講解(總結(jié)利用完全平方公式計(jì)算的步驟)第一步選擇公式,明確是哪兩項(xiàng)和(或差)的平方;第二步準(zhǔn)確代入公式;第三步化簡(jiǎn)。利用助記口訣幫助學(xué)生更加準(zhǔn)確的掌握完全平方公式的特點(diǎn)。 (2)(x-1)2;(3)(a+b)2。26x5,∴+1=177。使學(xué)生會(huì)分析和判斷一個(gè)多項(xiàng)式是否為完全平方式,初步掌握運(yùn)用完全平方式把多項(xiàng)式分解因式的方法;2。難點(diǎn):靈活運(yùn)用完全平方公式公解因式。2。請(qǐng)寫出完全平方公式。這就是說(shuō),兩個(gè)數(shù)的平方和,加上(或者減去)這兩個(gè)數(shù)的積的2倍,等于這兩個(gè)數(shù)的和(或者差)的平方。問:下列多項(xiàng)式是否為完全平方式?為什么?(1)x2+6x+9; (2)x2+xy+y2;(3)25x4-10x2+1; (4)16a2+1。3,所以x2+6x+9=(x+3) 。25x =(5x ) ,1=1 ,10x =2因?yàn)槿钡谌糠?。? 把25x4+10x2+1分解因式。5x2解法1 1- m+ =1-242。把下列各式分解因式:(1)a2-24a+144; (2)4a2b2+4ab+1;(3)19x2+2xy+9y2; (4)14a2-ab+b2。(1)不是完全平方式,如果把第二項(xiàng)的“-2x”改為“-4x”,原式就變?yōu)閤2-4x+4,它是完全平方式;或把第三項(xiàng)的“4”改為1,原式就變?yōu)閤2-2x+1,它是完全平方式。(5)是完全平方式,1-a+a2/4=(1-a2)2。首先要觀察、分析和判斷所給出的多項(xiàng)式是否為一個(gè)完全平方式,如果這個(gè)多項(xiàng)式是一個(gè)完全平方式,再運(yùn)用完全平方公式把它進(jìn)行因式分解。五、作業(yè)把下列各式分解因式:1。3。(1)(a+4)2; (2)(1-2t)2;(3)(m-7) 2; (4)(y+12)2。(1)(mn-1) 2; (2)7am-1(a-1) 2。利用完全平方公式進(jìn)行多項(xiàng)式的因式分解是在學(xué)生已經(jīng)學(xué)習(xí)了提取公因式法及利用平方差公式分解因式的基礎(chǔ)上進(jìn)行的,因此在教學(xué)設(shè)計(jì)中,重點(diǎn)放在判斷一個(gè)多項(xiàng)式是否為完全平方式上,采取啟發(fā)式的教學(xué)方法,引導(dǎo)學(xué)生積極思考問題,從中培養(yǎng)學(xué)生的思維品質(zhì)。例1和例2的講解可以在老師的引導(dǎo)下,師生共同分析和解答,使學(xué)生當(dāng)堂能夠掌握運(yùn)用平方公式進(jìn)行完全因式分解的方法。學(xué)生通過收集和處理信息、表達(dá)與交流等活動(dòng),獲得知識(shí)、技能、方法、態(tài)度特別是創(chuàng)新精神和實(shí)踐能力等方面的發(fā)展。學(xué)習(xí)者對(duì)即將學(xué)習(xí)的內(nèi)容已經(jīng)具備的水平:在學(xué)習(xí)完全平方公式之前,學(xué)生已經(jīng)能夠整理出公式的右邊形式。(二)知識(shí)與技能:經(jīng)歷從具體情境中抽象出符號(hào)的過程,認(rèn)識(shí)有理數(shù)、實(shí)數(shù)、代數(shù)式;掌握必要的運(yùn)算,(包括估算)技能;探索具體問題中的數(shù)量關(guān)系和變化規(guī)律,并能運(yùn)用代數(shù)式、不等式、函數(shù)等進(jìn)行描述。難點(diǎn):會(huì)推導(dǎo)完全平方公式教學(xué)過程教學(xué)過程設(shè)計(jì)如下:〈一〉、提出問題[引入]同學(xué)們,前面我們學(xué)習(xí)了多項(xiàng)式乘多項(xiàng)式法則和合并同類項(xiàng)法則,通過運(yùn)算下列四個(gè)小題,你能總結(jié)出結(jié)果與多項(xiàng)式中兩個(gè)單項(xiàng)式的關(guān)系嗎?(2m+3n)2=_______________,(2m3n)2=______________,(2m3n)2=_______________,(2m+3n)2=_______________。(3)三項(xiàng)系數(shù)的特點(diǎn)(特別是符號(hào)的特點(diǎn))。② (yx)2 =_______________。⑥ (4x5y)2 =______________。(3)中間項(xiàng)的符號(hào)由等號(hào)左邊的兩項(xiàng)符號(hào)是否相同決定。體會(huì)公式的發(fā)現(xiàn)和推導(dǎo)過程,理解公式的本質(zhì),從不同的層次上理解完全平方公式,并會(huì)運(yùn)用公式進(jìn)行簡(jiǎn)單的計(jì)算。教學(xué)難點(diǎn):會(huì)用完全平方公式進(jìn)行運(yùn)算教學(xué)方法:探索討論、歸納總結(jié)。二、情境引入活動(dòng)內(nèi)容:提出問題:一塊邊長(zhǎng)為a米的正方形實(shí)驗(yàn)田,由于效益比較高,所以要擴(kuò)大農(nóng)田,將其邊長(zhǎng)增加b米,形成四塊實(shí)驗(yàn)田,以種植不同的新品種(如圖)。引導(dǎo)學(xué)生利用幾何圖形來(lái)驗(yàn)證兩數(shù)差的完全平方公式。四、再識(shí)完全平方公式活動(dòng)內(nèi)容:例1用完全平方公式計(jì)算:(1)(2x?3)2(2)(4x+5y)2(3)(mn?a)2(4)(—1—2x)2(5)(—2x+1)2總結(jié)口訣:首平方,尾平方,兩倍乘積放中央,加減看前方,同加異減。三、學(xué)習(xí)難點(diǎn):理解完全平方公式的結(jié)構(gòu)特征并能靈活應(yīng)用公式進(jìn)行計(jì)算。(x—2y)2等于;答案:x2—8xy+4y2解析:解答:(x—2y)2=x2—8xy+4y2分析:根據(jù)完全平方公式與積的乘方法則可完成此題。正方形HCGM的邊長(zhǎng)是b,其面積就是 。:在解題之前應(yīng)注意觀察思考,選擇不同的方法會(huì)有不同的效果,要學(xué)會(huì)優(yōu)化選擇。學(xué)習(xí)過程:(一)自主探索計(jì)算:(1)(a+b)2 (2)(ab)2你能用文字?jǐn)⑹鲆陨系慕Y(jié)論嗎?(二)合作交流:你能利用下圖的面積關(guān)系解釋公式(a+b)2=a2+2ab+b2嗎?與同學(xué)交流。即∠1+∠2=90176。數(shù)形結(jié)合的數(shù)學(xué)思想和方法。嘗試用自己的語(yǔ)言敘述完全平方公式:完全平方公式的幾何意義:閱讀課本64頁(yè),完成填空。2. 197 師:要利用完全平方公式計(jì)算,則要?jiǎng)?chuàng)設(shè)符合公式特征的兩數(shù)和或兩數(shù)差的平方,:: =(100+2) =(2003) =100 +2 lOO 2+2, =200 2 2O0 3十3 ,=10000+400+4 =400001200+9 =10404 =38809 :1.(x3) x2.(2a+b )(2ab+ )師生共同分析:1中(x3) ,板書如下:解:1. (x3) x = x +6x+9x =6x+9師問:此題還有其他方法解嗎?引導(dǎo)學(xué)生逆用平方差公式,:分小組討論第(2),:2. (2a+b )(2ab+ )=[2a+(b )][2a(b )]=(2a) (b ) =4a (b3b+ )=4a b +3b三、試一試計(jì)算:1. (a+b+c)2. (a+b) 師生共同分析:對(duì)于1要把多項(xiàng)式完全平方轉(zhuǎn)化為二項(xiàng)式的完全平方,要使用加法結(jié)合律,(a+b+c) =[a+(b+c)] 對(duì)于(2)可化為(a+b) =(a+b)(a+b) .學(xué)生動(dòng)筆:在練習(xí)本上解答。,使學(xué)生感受科學(xué)的嚴(yán)謹(jǐn),啟迪學(xué)生的數(shù)學(xué)思維。3教學(xué)重點(diǎn)完全平方公式的準(zhǔn)確應(yīng)用。學(xué)生是學(xué)習(xí)的主人,在教師指導(dǎo)下主動(dòng)的、富有個(gè)性的學(xué)習(xí),用自己的身體去親自經(jīng)歷,用自己的心靈去親自感悟。兩數(shù)和的平方。[學(xué)生回答]總結(jié)完全平方公式的語(yǔ)言描述:兩數(shù)和的平方,等于它們平方的和,加上它們乘積的兩倍;
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1