【總結(jié)】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用——極大值與極小值一般地,設(shè)函數(shù)y=f(x),aby=f(x)xoyy=f(x)xoyab導(dǎo)數(shù)與函數(shù)的單調(diào)性的關(guān)系知識回顧1)如果在某區(qū)間上,那么f(x)為該區(qū)間上的增函數(shù),?f(x)02)如果在某區(qū)間上
2024-11-17 23:31
【總結(jié)】1.1.2瞬時變化率——導(dǎo)數(shù)(二)【學(xué)習(xí)要求】1.理解函數(shù)的瞬時變化率——導(dǎo)數(shù)的準(zhǔn)確定義和極限形式的意義,并掌握導(dǎo)數(shù)的幾何意義.2.理解導(dǎo)函數(shù)的概念,了解導(dǎo)數(shù)的物理意義和實際意義.【學(xué)法指導(dǎo)】導(dǎo)數(shù)就是瞬時變化率,理解導(dǎo)數(shù)概念可以結(jié)合曲線切線的斜率,結(jié)合瞬時速度,瞬時加速度;函數(shù)f(x)
2024-11-17 17:03
【總結(jié)】第1課時導(dǎo)數(shù)與函數(shù)的單調(diào)性..對于函數(shù)y=x3-3x,如何判斷單調(diào)性呢?你能畫出該函數(shù)的圖像嗎?定義法是解決問題的最根本方法,但定義法較繁瑣,又不能畫出它的圖像,那該如何解決呢?問題1:增函數(shù)和減函數(shù)一般地,設(shè)函數(shù)f(x)的定義域為I:如果對于定義域I內(nèi)某個區(qū)間D上的
2024-11-19 23:17
【總結(jié)】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)導(dǎo)數(shù)在實際生活中的應(yīng)用導(dǎo)學(xué)案(無答案)蘇教版選修1-1一:學(xué)習(xí)目標(biāo)1.學(xué)會把實際問題轉(zhuǎn)化為數(shù)學(xué)問題;2.最優(yōu)化問題的求解(利用導(dǎo)數(shù)求最值)。二:課前預(yù)習(xí)1.回憶求函數(shù)最值的步驟。60cm的鐵絲圍成矩形,長、寬各為多少時矩形的面積最大?
2024-11-20 00:30
【總結(jié)】導(dǎo)數(shù)在函數(shù)的單調(diào)性、極值中的應(yīng)用一、知識梳理1.函數(shù)的單調(diào)性與導(dǎo)數(shù)在區(qū)間(a,b)內(nèi),函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系:如果f_′(x)0,那么函數(shù) y=f(x)在這個區(qū)間內(nèi)單調(diào)遞增;如果f_′(x)0,那么函數(shù) y=f(x)在這個區(qū)間內(nèi)單調(diào)遞減;如果f_′(x)=0,那么 f(x)在這個區(qū)間內(nèi)為常數(shù).問題探究1:若函數(shù) f(x)在(a,b)內(nèi)
2025-08-04 07:33
【總結(jié)】本課時欄目開關(guān)畫一畫研一研章末復(fù)習(xí)課本課時欄目開關(guān)畫一畫研一研章末復(fù)習(xí)課本課時欄目開關(guān)畫一畫研一研題型一分類討論思想的應(yīng)用例1設(shè)函數(shù)f(x)=2x3-3(a-1)x2+1,其中a
2024-11-17 23:13
【總結(jié)】第三章導(dǎo)數(shù)及其應(yīng)用第10課時函數(shù)的最大值與最小值教學(xué)目標(biāo):;和步驟.教學(xué)重點:利用導(dǎo)數(shù)求函數(shù)的最大值和最小值的方法教學(xué)難點:函數(shù)的最大值、最小值與函數(shù)的極大值和極小值的區(qū)別與聯(lián)系教學(xué)過程:Ⅰ.問題情境Ⅱ.建構(gòu)數(shù)學(xué):::
2024-11-19 17:30
【總結(jié)】第1課時導(dǎo)數(shù)與函數(shù)的單調(diào)性,直觀探索并掌握函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系...對于函數(shù)y=x3-3x,如何判斷單調(diào)性呢?你能畫出該函數(shù)的圖像嗎?定義法是解決問題的最根本方法,但定義法較繁瑣,又不能畫出它的圖像,那該如何解決呢?問題1:增函數(shù)和減函數(shù)一般地,
2024-11-19 23:14
【總結(jié)】§1函數(shù)的單調(diào)性與極值導(dǎo)數(shù)與函數(shù)的單調(diào)性課時目標(biāo)掌握導(dǎo)數(shù)與函數(shù)單調(diào)性之間的關(guān)系,會利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求不超過三次的多項式函數(shù)的單調(diào)區(qū)間.1.導(dǎo)函數(shù)的符號和函數(shù)的單調(diào)性的關(guān)系:如果在某個區(qū)間內(nèi),函數(shù)y=f(x)的導(dǎo)數(shù)________,則在這個區(qū)間上,函數(shù)y=f(x)是增加的;如果在某個區(qū)間
2024-12-05 01:55
【總結(jié)】第三章導(dǎo)數(shù)及其應(yīng)用第2課時曲線上一點處的切線教學(xué)目標(biāo):;、求法及切線方程的求法;“局部以直代曲”和“用割線的逼近切線”的思想方法.教學(xué)重點:理解曲線在一點處的切線的定義,以及曲線在一點處的切線的斜率的定義,掌握曲線在一點處切線斜率及切線方程的求法教學(xué)難點:理解曲線在一點處的
【總結(jié)】1、求函數(shù)在某點的切線方程2、判斷單調(diào)性、求單調(diào)區(qū)間3、求函數(shù)的極值4、求函數(shù)的最值…導(dǎo)數(shù)主要有哪些方面的應(yīng)用?應(yīng)用一、判斷單調(diào)性、求單調(diào)區(qū)間函數(shù)的導(dǎo)數(shù)與函數(shù)的單調(diào)性之間的關(guān)系?判斷函數(shù)單調(diào)性的常用方法:(1)定義法(2)導(dǎo)數(shù)法1)如果在某區(qū)
2024-11-18 08:56
【總結(jié)】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)常見函數(shù)的導(dǎo)數(shù)(2)導(dǎo)學(xué)案(無答案)蘇教版選修1-1一、學(xué)習(xí)目標(biāo)1.熟記常見的基本初等函數(shù)的求導(dǎo)公式。2.熟練掌握求簡單函數(shù)的導(dǎo)數(shù)的兩種方法:定義法、公式法。3.理解導(dǎo)數(shù)的幾何意義,并掌握曲線的切線問題的處理的基本路徑。二、課前預(yù)習(xí)1.列出你所知的求導(dǎo)公式。
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》選修1-1《導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用-單調(diào)性》審校:王偉教學(xué)目標(biāo)?原理;??教學(xué)重點:?利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性.函數(shù)的單調(diào)性與導(dǎo)數(shù)情境設(shè)置探索研究演練反饋總結(jié)提煉作業(yè)布置創(chuàng)新升級oy
2024-11-24 14:05
【總結(jié)】導(dǎo)數(shù)在實際生活中的應(yīng)用教學(xué)過程:一、復(fù)習(xí)引入::一般地,設(shè)函數(shù)f(x)在點x0附近有定義,如果對x0附近的所有的點,都有f(x)<f(x0),就說f(x0)是函數(shù)f(x)的一個極大值,記作y極大值=f(x0),x0是極大值點奎屯王新敞新疆:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對x0附近的所有的點
2024-12-08 13:49
【總結(jié)】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)常見函數(shù)的導(dǎo)數(shù)(1)導(dǎo)學(xué)案(無答案)蘇教版選修1-1一、學(xué)習(xí)目標(biāo)1.能由導(dǎo)數(shù)的定義三個步驟推導(dǎo)如ykxb??、yc?、yx?、2yx?、1yx?等最簡單函數(shù)的導(dǎo)數(shù)公式。2.熟記冪函數(shù)、指數(shù)對數(shù)函數(shù)、正弦余弦函數(shù)的導(dǎo)數(shù)公式。3.初步會利用導(dǎo)數(shù)公式求簡單函數(shù)的導(dǎo)