【總結(jié)】§算法的概念(兩個(gè)課時(shí))教學(xué)目標(biāo):(1)了解算法的含義,體會(huì)算法的思想。(2)能夠用自然語言敘述算法。(3)掌握正確的算法應(yīng)滿足的要求。(4)會(huì)寫出解線性方程(組)的算法。(5)會(huì)寫出一個(gè)求有限整數(shù)序列中的最大值的算法。教學(xué)重點(diǎn):算法的含義、解二元一次方程組和判斷一個(gè)數(shù)為質(zhì)數(shù)的算法設(shè)計(jì)。.教學(xué)難點(diǎn):把自然
2024-12-03 04:57
【總結(jié)】例題講解:向量的加法和減法本單元重點(diǎn)要求學(xué)生掌握向量的幾何與加減運(yùn)算和數(shù)乘運(yùn)算,故要安排范例與足夠的練習(xí),使學(xué)生對(duì)向量的線性運(yùn)算有相當(dāng)?shù)恼莆眨蛄抗簿€論證與平面向量分解是用向量證明幾何命題基礎(chǔ),也應(yīng)配備適當(dāng)例題,提高學(xué)生這方面能力,開始還要給出一些辨識(shí)相等向量的圖形和使用向量各種表示記號(hào)的訓(xùn)練.例1.如圖5-4已知梯形ABCD中,兩底角∠A=∠B
2024-11-19 23:18
【總結(jié)】【步步高學(xué)案導(dǎo)學(xué)設(shè)計(jì)】2021-2021學(xué)年高中數(shù)學(xué)第二章解析幾何初步習(xí)題課五北師大版必修2【課時(shí)目標(biāo)】1.正確理解直線與圓的概念并能解決簡(jiǎn)單的實(shí)際問題.2.能利用直線與圓的位置關(guān)系解決簡(jiǎn)單的實(shí)際問題.3.體會(huì)用代數(shù)方法處理幾何問題的思想.用坐標(biāo)方法解決平面幾何問題的“三步曲”:一、選擇題1.實(shí)數(shù)
2024-12-04 20:39
【總結(jié)】正弦定理知識(shí)歸納:在一個(gè)三角形中,各邊的長(zhǎng)和它所對(duì)角的正弦的比相等,即sinsinabAB?sincC?:⑴正弦定理是解三角形的重要定理,它反映了三角形各邊和它所對(duì)角的正弦的比的關(guān)系,并非常好的描述了任意三角形中邊與角的一種數(shù)量關(guān)系。常與三角、向量、幾何等基礎(chǔ)知識(shí)相結(jié)合命題,以考察綜合運(yùn)用數(shù)學(xué)知識(shí)的能力,這是近幾年高考的重點(diǎn)、熱點(diǎn)和今后命
2024-11-18 23:35
【總結(jié)】1章末知識(shí)整合蘇教版必修3題型一算法設(shè)計(jì)已知平面直角坐標(biāo)系內(nèi)兩不同點(diǎn)A,B,試求AB的垂直平分線的方程.試寫出這個(gè)問題的算法.分析:首先應(yīng)判斷A、B兩點(diǎn)的橫、縱坐標(biāo)是否相等,在不等時(shí),先求垂直平分的斜率或線段AB的中點(diǎn)坐標(biāo),最后由點(diǎn)斜式寫出直線方程.解析:算法如下:
2024-12-05 00:28
【總結(jié)】從力做的功到向量的數(shù)量積●教學(xué)目標(biāo)1.通過實(shí)例,正確理解平面向量的數(shù)量積的概念,能夠運(yùn)用這一概念求兩個(gè)向量的數(shù)量積,并能根據(jù)條件逆用等式求向量的夾角;2.掌握平面向量的數(shù)量積的5個(gè)重要性質(zhì),并能運(yùn)用這些性質(zhì)解決有關(guān)問題;3.通過平面向量的數(shù)量積的重要性質(zhì)猜想與證明,培養(yǎng)學(xué)生的探索精神和嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度以及實(shí)際動(dòng)手能力;4
2024-12-05 01:51
【總結(jié)】2020高中數(shù)學(xué)第二章《對(duì)數(shù)及其運(yùn)算》第二課時(shí)參考教案北師大版必修1一.教學(xué)目標(biāo):1.知識(shí)與技能①通過實(shí)例推導(dǎo)對(duì)數(shù)的運(yùn)算性質(zhì),準(zhǔn)確地運(yùn)用對(duì)數(shù)運(yùn)算性質(zhì)進(jìn)行運(yùn)算,求值、化簡(jiǎn),并掌握化簡(jiǎn)求值的技能.②運(yùn)用對(duì)數(shù)運(yùn)算性質(zhì)解決有關(guān)問題.③培養(yǎng)學(xué)生分析、綜合解決問題的能力.培養(yǎng)學(xué)生數(shù)學(xué)應(yīng)用的意識(shí)和科學(xué)分析問題的精神和態(tài)度.2.
2024-11-19 23:19
【總結(jié)】2020高中數(shù)學(xué)第二章《指數(shù)函數(shù)》第二課時(shí)參考教案北師大版必修1問題:1:從畫出的圖象中,你能發(fā)現(xiàn)函數(shù)的圖象與底數(shù)間有什么樣的規(guī)律.從圖上看xya?(a>1)與xya?(0<a<1)兩函數(shù)圖象的特征.8642-2-4-6-8-10-5510問題2:根據(jù)函數(shù)的圖象研究函數(shù)的定義域
【總結(jié)】對(duì)數(shù)函數(shù)對(duì)數(shù)函數(shù)?對(duì)數(shù)函數(shù)的定義?對(duì)數(shù)函數(shù)圖像作法?對(duì)數(shù)函數(shù)性質(zhì)?指數(shù)函數(shù)、對(duì)數(shù)函數(shù)性質(zhì)比較?例題講解?總結(jié)對(duì)數(shù)函數(shù)的定義?由y=ax(a大于零且不等于1)可求出x=Logay(a大于零且不等于1,y0),稱之為對(duì)數(shù)函數(shù)?因?yàn)榱?xí)慣上常用x表示自變量,
2024-11-18 00:49
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示一、教材分析1.本課的地位及作用:平面向量數(shù)量積的坐標(biāo)表示,就是運(yùn)用坐標(biāo)這一量化工具表達(dá)向量的數(shù)量積運(yùn)算,為研究平面中的距離、垂直、角度等問題提供了全新的手段。它把向量的數(shù)量積與坐標(biāo)運(yùn)算兩個(gè)知識(shí)點(diǎn)緊密聯(lián)系起來,是全章重點(diǎn)之一。:在此之前學(xué)生已學(xué)習(xí)了平面向量的坐標(biāo)表示和平面向量數(shù)量積概念及運(yùn)算,但數(shù)量積是用長(zhǎng)度和夾角這兩個(gè)概念
2024-12-05 06:37
【總結(jié)】平面向量的坐標(biāo)運(yùn)算學(xué)習(xí)了向量的坐標(biāo)表示后,我們可以把向量運(yùn)算代數(shù)化.將數(shù)與形緊密結(jié)合起來,從而使許多問題轉(zhuǎn)化為我們熟知的數(shù)量運(yùn)算,使問題得以簡(jiǎn)化.下面舉例說明平面向量的坐標(biāo)運(yùn)算在解幾類題中的應(yīng)用.一、兩向量相等問題例1已知向量?u(),xy和向量v(2)??,yyx的對(duì)應(yīng)關(guān)系可用v?f()u表示,求證:對(duì)任意向量,ab
2024-12-05 06:36
【總結(jié)】【金榜教程】2021年高中數(shù)學(xué)第二章平面向量單元質(zhì)量評(píng)估北師大版必修4(120分鐘150分)一、選擇題(本大題共12小題,每小題5分,共60分,在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的)1.(20212慈溪高一檢測(cè))已知ABuur=(3,0),則|ABuur|等于()(A)2
2024-12-03 03:13
【總結(jié)】從位移、速度、力到向量一、教學(xué)目標(biāo):(1)理解向量與數(shù)量、向量與力、速度、位移之間的區(qū)別;(2)理解向量的實(shí)際背景與基本概念,理解向量的幾何表示,并體會(huì)學(xué)科之間的聯(lián)系.(3)通過教師指導(dǎo)發(fā)現(xiàn)知識(shí)結(jié)論,培養(yǎng)學(xué)生抽象概括能力和邏輯思維能力通過力與力的分析等實(shí)例,引導(dǎo)學(xué)生了解向量的實(shí)際背景,幫助學(xué)生理解平面向量與向量相等的含義以及
【總結(jié)】平面向量的線性運(yùn)算例1一輛汽車從A點(diǎn)出發(fā)向西行駛了100公里到達(dá)B點(diǎn),然后又改變方向向西偏北050走了200公里到達(dá)C點(diǎn),最后又改變方向,向東行駛了100公里到達(dá)D點(diǎn)。(1)作出向量AB,BC,CD;(2)求AD。分析:解答本題應(yīng)首先確立指向標(biāo),然后再根據(jù)行駛方向確定出有關(guān)向量,進(jìn)而求解。解析:(
2024-12-05 06:40
【總結(jié)】陜西省吳堡縣吳堡中學(xué)高中數(shù)學(xué)第二章從位移、速度、力到向量教學(xué)設(shè)計(jì)北師大版必修4本節(jié)課的內(nèi)容是北師大版數(shù)學(xué)必修4,第二章《平面向量》的引言和第一節(jié)《從位移、速度、力到向量》兩部分,所需課時(shí)為1課時(shí)。一、教材分析向量是近代數(shù)學(xué)最重要和最基本的數(shù)學(xué)概念之一,它是溝通代數(shù)、幾何與三角函數(shù)的橋梁,對(duì)更新和完善中學(xué)數(shù)學(xué)知識(shí)結(jié)構(gòu)起著重要的作用。向量集
2024-11-19 18:39