freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

平面與平面平行的性質(zhì)-wenkub

2024-10-21 00 本頁面
 

【正文】 可如何轉(zhuǎn)化?③找出恰當空間模型加以說明.④用三種語言描述平面與平面平行的判定定理.⑤應用面面平行的判定定理應注意什么?⑥利用空間模型探究:如果兩個平面平行,那么一個平面內(nèi)的直線與另一個平面內(nèi)的直線具有什么位置關(guān)系?⑦回憶線面平行的性質(zhì)定理,結(jié)合模型探究面面平行的性質(zhì)定理.⑧用三種語言描述平面與平面平行的性質(zhì)定理.⑨應用面面平行的性質(zhì)定理的難點在哪里?⑩應用面面平行的性質(zhì)定理口訣是什么?活動:先讓學生動手做題后再回答,經(jīng)教師提示、點撥,對回答正確的學生及時表揚,①②③④⑤⑥引導學生畫圖探究,⑦⑧⑨⑩引導學生自己總結(jié),:①如果兩個平面沒有公共點,則兩平面平行219。用二面角的平面角的定義求二面角的大小的關(guān)鍵點是:①明確構(gòu)成二面角兩個半平面和棱; ②明確二面角的平面角是哪個?而要想明確二面角的平面角,關(guān)鍵是看該角的兩邊是否都和棱垂直。二面角的平面角分別在兩個半平面內(nèi)且角的兩邊與二面角的棱垂直如圖:在二面角alb中,O棱上一點,OA204。](2)斜線與平面成成的角:斜線與它在平面上的射影成的角。空間角及空間距離的計算(1)異面直線所成角:使異面直線平移后相交形成的夾角,通常在在兩異面直線中的一條上取一點,過該點作另一條直線平行線,如圖:直線a與b異面,b//b162。a,且a^OA254。OA是PA在平面a上的射影252。a,a^l,則a^b.(面面垂直174。面面垂直)164。的角,已知BC=6,164。例題精講:【例1】四面體ABCD中,AC=BD,E,F分別為AD,BC的中點,且EF=208。知識要點::如果直線l與平面a內(nèi)的任意一條直線都垂直,則直線l與平面a互相垂直,記作l^-平面a的垂線,a-直線l的垂面,它們的唯一公共點P叫做垂足.(線線垂直174。a222。第一篇:平面與平面平行的性質(zhì)平面與平面平行的性質(zhì)164。l//b; ②a//b,l^a222。線面垂直):一條直線與一個平面內(nèi)的兩條相交直線都垂直,:若l⊥m,l⊥n,m∩n=B,m204。BDC=90,求證:BD^,【例2】已知棱長為1的正方體ABCD-A1B1C1D1,E是A1B1的中點,求直線AE與平面ABC1D1所成角的正弦值.【例3】三棱錐PABC中,PA^BC,PB^AC,PO^平面ABC,垂足為O,求證:O為底面△ABC垂心.【例4】已知RtDABC,斜邊BC//平面a,A206。知識要點: :從一條直線出發(fā)的兩個半平面所組成的圖形叫二面角(dihedral angle).這條直線叫做二面角的棱,-AB-b.(簡記P-AB-Q):在二面角a-l-b的棱l上任取一點O,以點O為垂足,在半平面a,b內(nèi)分別作垂直于棱l的射線OA和OB,:0176。例題精講:【例1】已知正方形ABCD的邊長為1,分別取邊BC、CD的中點E、F,連結(jié)AE、EF、AF,以AE、EF、FA為折痕,折疊使點B、C、D重合于一點P.(1)求證:AP⊥EF;(2)求證:平面APE⊥1EAC【例2】如圖, 在空間四邊形ABCD中,AB=BC,CD=DA, E,F,G分別是CD,DA,AC的中點,求證:平面BEF^平面CBGD.【例3】如圖,在正方體ABCDA1B1C1D1BC中,E是CC1的中點,求證:B1平面A1BD^平面BED.【例4】正三棱柱ABC—A1B1C1中,AA1=2AB,D、E分別是側(cè)棱BBCC1上的點,且EC=BC=2BD,過A、D、E作一截面,求:(1)截面與底面所成的角;(2)、面面垂直的性質(zhì)164。線面垂直)164。253。即:線影垂直222。直線a與直線b162。如圖:PA是平面a的一條斜線,A為斜足,O為垂足,OA叫斜線PA在平面a上射影,208。a,OB204。(求空間角的三個步驟是“一找”、“二證”、“三計算”):指夾在兩異面直線之間的公垂線段的長度。若α∩β=198。但是,平面AA′D′D∩平面D
點擊復制文檔內(nèi)容
高考資料相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1