【總結(jié)】離散型隨機(jī)變量的分布列問題導(dǎo)學(xué)一、離散型隨機(jī)變量的分布列活動與探究1某商店試銷某種商品20天,獲得如下數(shù)據(jù):日銷售量(件)0123頻數(shù)1595試銷結(jié)束后(假設(shè)該商品的日銷售量的分布規(guī)律不變),設(shè)某天開始營業(yè)時(shí)有該商品3件,當(dāng)天營業(yè)結(jié)束后檢查存貨,若發(fā)現(xiàn)存量少于2件,則當(dāng)天進(jìn)貨補(bǔ)充至3件,否則不進(jìn)
2024-11-28 00:03
【總結(jié)】離散型隨機(jī)變量的方差一般地,若離散型隨機(jī)變量X的概率分布為則稱E(X)=x1p1+x2p2+…+xnpn為X的均值或數(shù)學(xué)期望,記為E(X)或μ.Xx1x2…xnPp1p2…pn其中pi≥0,i=1,2,…,n;p1+p2+…+pn=11、離散型隨機(jī)變量的均值的定義
2024-11-18 15:23
【總結(jié)】離散型隨機(jī)變量的均值1、什么叫n次獨(dú)立重復(fù)試驗(yàn)?一.復(fù)習(xí)其中0<p<1,p+q=1,k=0,1,2,...,nP(X=k)=pkqn-kCkn則稱X服從參數(shù)為n,p的二項(xiàng)分布,記作X~B(n,p)一般地,由n次試驗(yàn)構(gòu)成,且每次試驗(yàn)互相獨(dú)立完成,每次試驗(yàn)的結(jié)果僅有兩種對立的狀態(tài),即A與,每次試驗(yàn)中P(A)
2024-11-18 08:45
【總結(jié)】隨機(jī)變量及其概率分布一、學(xué)習(xí)目標(biāo),了解隨機(jī)變量及離散型隨機(jī)變量的意義,理解取有限值的離散型隨機(jī)變量及其概率分布的概念.,認(rèn)識概率分布對于刻畫隨機(jī)現(xiàn)象的重要性.重點(diǎn)難點(diǎn):理解離散型隨機(jī)變量及其概率分布的概念與求法.二、課前自學(xué)10株樹苗,成活的樹苗數(shù)X是0,1,?,10中的某個(gè)數(shù).,向上的點(diǎn)數(shù)Y
2024-12-05 09:27
【總結(jié)】§2.3離散型隨機(jī)變量的均值與方差§2.3.1離散型隨機(jī)變量的均值教學(xué)目標(biāo):知識與技能:了解離散型隨機(jī)變量的均值或期望的意義,會根據(jù)離散型隨機(jī)變量的分布列求出均值或期望.過程與方法:理解公式“E(aξ+b)=aEξ+b”,以及“若ξB(n,p),則Eξ=np”.能熟練地應(yīng)用它們求相應(yīng)的
2024-11-19 19:35
【總結(jié)】§2.3.2離散型隨機(jī)變量的方差教學(xué)目標(biāo):知識與技能:了解離散型隨機(jī)變量的方差、標(biāo)準(zhǔn)差的意義,會根據(jù)離散型隨機(jī)變量的分布列求出方差或標(biāo)準(zhǔn)差。過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應(yīng)用上述公式計(jì)算有關(guān)隨機(jī)變量的方差。情感、態(tài)度與價(jià)值觀:
2024-12-05 06:38
【總結(jié)】量的分布列(1)一個(gè)試驗(yàn)如果滿足下述條件:(1)試驗(yàn)可以在相同的條件下重復(fù)進(jìn)行;(2)試驗(yàn)的所有結(jié)果是明確的且不止一個(gè);(3)每次試驗(yàn)總是出現(xiàn)這些結(jié)果中的一個(gè),但在試驗(yàn)之前卻不能肯定這次試驗(yàn)會出現(xiàn)哪一個(gè)結(jié)果。這樣的試驗(yàn)就叫做一個(gè)隨機(jī)試驗(yàn),也簡稱試驗(yàn)。隨機(jī)試驗(yàn)一、復(fù)習(xí)引入:例(1)某人射擊一
2024-10-12 17:09
【總結(jié)】第二章,隨機(jī)變量及其分布,第一頁,編輯于星期六:點(diǎn)三十五分。,2.3離散型隨機(jī)變量的均值與方差,2.3.2離散型隨機(jī)變量的方差,第二頁,編輯于星期六:點(diǎn)三十五分。,課前教材預(yù)案,課堂深度拓展,課末隨堂...
2024-10-22 18:57
【總結(jié)】§2.3.2離散型隨機(jī)變量的方差教學(xué)目標(biāo):知識與技能:了解離散型隨機(jī)變量的方差、標(biāo)準(zhǔn)差的意義,會根據(jù)離散型隨機(jī)變量的分布列求出方差或標(biāo)準(zhǔn)差。過程與方法:了解方差公式“D(aξ+b)=a2Dξ”,以及“若ξ~Β(n,p),則Dξ=np(1—p)”,并會應(yīng)用上述公式計(jì)算有關(guān)隨機(jī)變量的方差。情感、態(tài)度與價(jià)值觀
【總結(jié)】離散型隨機(jī)變量的期望1、什么叫n次獨(dú)立重復(fù)試驗(yàn)?一.復(fù)習(xí)其中0<p<1,p+q=1,k=0,1,2,...,nP(X=k)=pkqn-kCkn則稱X服從參數(shù)為n,p的二項(xiàng)分布,記作X~B(n,p)一般地,由n次試驗(yàn)構(gòu)成,且每次試驗(yàn)互相獨(dú)立完成,每次試驗(yàn)的結(jié)果僅有兩種對立的狀態(tài),即A與,每次試驗(yàn)中P(A)
【總結(jié)】學(xué)案5離散型隨機(jī)變量及其分布列離散型隨機(jī)變量及其分布列布列的概念,認(rèn)識分布列刻畫隨機(jī)現(xiàn)象的重要性,會求某些取有限個(gè)值的離散型隨機(jī)變量的分布列.,并能進(jìn)行簡單應(yīng)用.求簡單隨機(jī)變量的分布列,以及由此分布列求隨機(jī)變量的期望與方差.這部分知識綜合性強(qiáng),涉及排列、組合、二項(xiàng)式定理和概率,仍會以解答題形式出現(xiàn),以
2025-06-12 18:50
【總結(jié)】選修2-3第二章第2課時(shí)一、選擇題1.已知隨機(jī)變量X的分布列為:P(X=k)=12k,k=1、2、?,則P(2<X≤4)=()A.316B.14C.116D.516[答案]A[解析]P(2<X≤4)=P(X=3)+P(X=4)=12
2024-12-05 06:40