【總結(jié)】單調(diào)性與最大(小)值第三課時(shí)函數(shù)的最值問題提出?,如果函數(shù)的圖象存在最高點(diǎn)或最低點(diǎn),它又反映了函數(shù)的什么性質(zhì)?知識探究(一)觀察下列兩個(gè)函數(shù)的圖象:圖1ox0xMy思考1:這兩個(gè)函數(shù)圖象有何共同特征?yxox0圖2MAB
2024-11-10 08:36
【總結(jié)】課題:§函數(shù)的單調(diào)性教學(xué)目的:(1)通過已學(xué)過的函數(shù)特別是二次函數(shù),理解函數(shù)的單調(diào)性及其幾何意義;(2)學(xué)會運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì);(3)能夠熟練應(yīng)用定義判斷數(shù)在某區(qū)間上的的單調(diào)性.教學(xué)重點(diǎn):函數(shù)的單調(diào)性及其幾何意義.教學(xué)難點(diǎn):利用函數(shù)的單調(diào)性定義判斷、證明函數(shù)的單調(diào)性.教學(xué)過程:
2024-11-24 21:37
【總結(jié)】導(dǎo)數(shù)單調(diào)性、極值、最值教學(xué)目標(biāo):掌握運(yùn)用導(dǎo)數(shù)求解函數(shù)單調(diào)性的步驟與方法重點(diǎn)難點(diǎn):能夠判定極值點(diǎn),并能求解閉區(qū)間上的最值問題利用導(dǎo)數(shù)研究函數(shù)的極值、最值:(1)求導(dǎo)數(shù);(2)解方程;(3)使不等式成立的區(qū)間就是遞增區(qū)間,使成立的區(qū)間就是遞減區(qū)間。,右側(cè)____0,那么是的極大值;如果在根附近的左側(cè)____0,右側(cè)____0,那么是的極小值典型例題:
2025-07-26 05:39
【總結(jié)】第一篇:2011屆高三數(shù)學(xué)第一輪總復(fù)習(xí)函數(shù)的單調(diào)性教案 高三數(shù)學(xué)第一輪總復(fù)習(xí)函數(shù)的單調(diào)性教案 課題:函數(shù)的單調(diào)性 教學(xué)目標(biāo):理解函數(shù)單調(diào)性的定義,會用函數(shù)單調(diào)性解決一些問題.教學(xué)重點(diǎn):函數(shù)單調(diào)性...
2024-11-03 12:01
【總結(jié)】函數(shù)的單調(diào)性與奇偶性一.基礎(chǔ)練習(xí):1.求下列函數(shù)的單調(diào)區(qū)間:(1)223xxy???(2)2212???xxy2.判斷下列函數(shù)奇偶性:(1)|32||32|)(????xxxf(2)2|2|1)(2????xxxf12?x(x0)
2024-11-10 23:50
【總結(jié)】函數(shù)的單調(diào)性教學(xué)目標(biāo)1.使學(xué)生理解函數(shù)單調(diào)性的概念,并能判斷一些簡單函數(shù)在給定區(qū)間上的單調(diào)性.2.通過函數(shù)單調(diào)性概念的教學(xué),培養(yǎng)學(xué)生分析問題、認(rèn)識問題的能力.通過例題培養(yǎng)學(xué)生利用定義進(jìn)行推理的邏輯思維能力.3.通過本節(jié)課的教學(xué),滲透數(shù)形結(jié)合的數(shù)學(xué)思想,對學(xué)生進(jìn)行辯證唯物主義的教育.教學(xué)重點(diǎn)與難點(diǎn)教學(xué)重點(diǎn):函數(shù)單調(diào)性的概念.
2024-11-26 21:24
【總結(jié)】....導(dǎo)數(shù)與單調(diào)性極值最基礎(chǔ)值習(xí)題 一.選擇題1.可導(dǎo)函數(shù)y=f(x)在某一點(diǎn)的導(dǎo)數(shù)值為0是該函數(shù)在這點(diǎn)取極值的( ?。〢.充分條件 B.必要條件C.充要條件 D.必要非充分條件2.函數(shù)y=1+3x﹣x3有( )A.極小值﹣1,極大值3 B.極小值﹣2,極
2025-03-25 00:40
【總結(jié)】導(dǎo)數(shù)與單調(diào)性極值最基礎(chǔ)值習(xí)題 一.選擇題1.可導(dǎo)函數(shù)y=f(x)在某一點(diǎn)的導(dǎo)數(shù)值為0是該函數(shù)在這點(diǎn)取極值的( ?。〢.充分條件 B.必要條件C.充要條件 D.必要非充分條件2.函數(shù)y=1+3x﹣x3有( ?。〢.極小值﹣1,極大值3 B.極小值﹣2,極大值3C.極小值﹣1,極大值1 D.極小值﹣2,極大值23.函數(shù)f(x)=x3+ax2﹣3x﹣9,已知f
2025-08-05 05:49
【總結(jié)】第6講三角函數(shù)單調(diào)性及最值[學(xué)習(xí)目標(biāo)]1.掌握y=sinx的最大值與最小值,并會求簡單三角函數(shù)的值域和最值.2.掌握y=sinx的單調(diào)性,并能利用單調(diào)性比較大小.=Asin(ωx+φ)的單調(diào)區(qū)間.[知識鏈接]1.怎樣求函數(shù)f(x)=Asin(ωx+φ)的最小正周期?答 由誘導(dǎo)公式一知:對任意x∈R,都有Asin[(ωx+φ)+2π]=Asin(ωx+φ),
2025-07-23 03:00
【總結(jié)】數(shù)列的最值問題及單調(diào)數(shù)列問題求等差數(shù)列前n項(xiàng)和最值的兩種方法(1)函數(shù)法:利用等差數(shù)列前n項(xiàng)和的函數(shù)表達(dá)式,通過配方或借助圖象求二次函數(shù)最值的方法求解.(2)鄰項(xiàng)變號法①時(shí),滿足的項(xiàng)數(shù)m使得取得最大值為;②當(dāng)時(shí),滿足的項(xiàng)數(shù)m使得取得最小值為.例1、在等差數(shù)列{an}中,已知a1=20,前n項(xiàng)和為Sn,且S10=S15,求當(dāng)n取何值時(shí),Sn取得最大值,并求出它
2025-03-25 02:51
【總結(jié)】 課時(shí)作業(yè)5 函數(shù)的單調(diào)性與最值 [基礎(chǔ)達(dá)標(biāo)] 一、選擇題 1.[2021·山西名校聯(lián)考]下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是( ) A....
2025-04-03 00:51
【總結(jié)】第一篇:函數(shù)的單調(diào)性與導(dǎo)數(shù)課后反思 課后反思 : 教學(xué)過程中教師指導(dǎo)啟發(fā)學(xué)生以已知的熟悉的二次函數(shù)為研究的起點(diǎn),發(fā)現(xiàn)函數(shù)的導(dǎo)數(shù)的正負(fù)與函數(shù)單調(diào)性的關(guān)系,從而到更多的,更復(fù)雜的函數(shù),從中發(fā)現(xiàn)規(guī)律,...
2024-11-04 01:27
【總結(jié)】2020屆高考數(shù)學(xué)復(fù)習(xí)強(qiáng)化雙基系列課件13《函數(shù)的最值》知識網(wǎng)絡(luò)最值求解方法最值問題常用解法最值綜合問題最值應(yīng)用問題“恒成立”問題“存在”問題:配方法,判別式法,代換法,不等式法,單調(diào)性法,數(shù)形結(jié)合法,三角函數(shù)有界法,反函數(shù)法。復(fù)習(xí)導(dǎo)引,
2024-11-11 02:54
【總結(jié)】第一篇:2014屆高三數(shù)學(xué)一輪復(fù)習(xí)《導(dǎo)數(shù)研究函數(shù)的最值、優(yōu)化問題、方程與不等式》理 [第15講導(dǎo)數(shù)研究函數(shù)的最值、優(yōu)化問題、方程與不等式] (時(shí)間:45分鐘分值:100分) 基礎(chǔ)熱身 x1.[...
2024-10-13 17:17
【總結(jié)】│函數(shù)的單調(diào)性與最值│知識梳理知識梳理│知識梳理│知識梳理│知識梳理│要點(diǎn)探究要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究
2025-07-20 05:00