【總結(jié)】充要條件【學(xué)習(xí)目標(biāo)】理解充要條件的定義.【自主學(xué)習(xí)】研讀教材,回答下列問題:三、已知p:整數(shù)a是6的倍數(shù),q:整數(shù)a是2和3的倍數(shù).那么p是q的什么條件?q是p的什么條件?(1)上述問題中,p?q,故p是q的條件,q是p的條件;另一方面,q?
2024-12-05 06:41
【總結(jié)】空間向量的數(shù)乘運(yùn)算(一)【學(xué)習(xí)目標(biāo)】1.掌握空間向量的數(shù)乘運(yùn)算律,能進(jìn)行簡(jiǎn)單的代數(shù)式化簡(jiǎn);2.理解共線向量定理和共面向量定理及它們的推論;3.能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問題.【重點(diǎn)難點(diǎn)】向量的數(shù)乘運(yùn)算律,能進(jìn)行簡(jiǎn)單的代數(shù)式化簡(jiǎn);用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問題【
2024-11-19 19:36
【總結(jié)】空間向量的數(shù)乘運(yùn)算(二)【學(xué)習(xí)目標(biāo)】1.掌握空間向量的數(shù)乘運(yùn)算律,能進(jìn)行簡(jiǎn)單的代數(shù)式化簡(jiǎn);2.理解共線向量定理和共面向量定理及它們的推論;3.能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問題.【重點(diǎn)難點(diǎn)】空間向量的數(shù)乘運(yùn)算律用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問題.【學(xué)習(xí)過程】
2024-11-19 20:38
【總結(jié)】雙曲線及其標(biāo)準(zhǔn)方程(二)【學(xué)習(xí)目標(biāo)】進(jìn)一步掌握雙曲線的定義,熟記雙曲線的標(biāo)準(zhǔn)方程.【自主學(xué)習(xí)】名稱橢圓雙曲線圖象xOyxOy定義平面內(nèi)到兩定點(diǎn)21,FF的距離的和為常數(shù)(大于21FF
2024-11-23 01:00
【總結(jié)】雙曲線及其標(biāo)準(zhǔn)方程(一)【學(xué)習(xí)目標(biāo)】初步掌握雙曲線的定義,熟記雙曲線的標(biāo)準(zhǔn)方程.【自主學(xué)習(xí)】:手工操作演示雙曲線的形成:(按課本52頁(yè)的做法去做)分析:(1)軌跡上的點(diǎn)是怎么來的?(2)在這個(gè)運(yùn)動(dòng)過程中,什么是不變的?2.雙曲線的定義:平面內(nèi)到兩定點(diǎn)21,FF的距離的為常數(shù)
【總結(jié)】課題.3空間向量運(yùn)算的坐標(biāo)表示學(xué)習(xí)目標(biāo):知識(shí)與技能掌握空間向量加法、減法、數(shù)乘、數(shù)量積運(yùn)算的坐標(biāo)表示以及向量的長(zhǎng)度、夾角公式的坐標(biāo)表示,并能初步應(yīng)用這些知識(shí)解決簡(jiǎn)單的立體幾何問題.過程與方法①通過將空間向量運(yùn)算與熟悉的平面向量的運(yùn)算進(jìn)行類比,使學(xué)生掌握空間向量運(yùn)算的坐標(biāo)表示,滲透類比的數(shù)學(xué)方法;
2024-12-03 00:16
【總結(jié)】四種命題【學(xué)習(xí)目標(biāo)】了解原命題、逆命題、否命題、逆否命題這四種命題的概念.【自主學(xué)習(xí)】下列四個(gè)命題中,命題(1)與命題(2)、(3)、(4)的條件與結(jié)論之間分別有什么關(guān)系?(1)若f(x)是正弦函數(shù),則f(x)是周期函數(shù).(2)若f(x)是周期函數(shù),則f(x)是正弦函數(shù).(3)若f(x)
【總結(jié)】【學(xué)習(xí)目標(biāo)】理解軌跡的定義,并能根據(jù)所給的條件,選擇恰當(dāng)?shù)闹苯亲鴺?biāo)系求曲線的軌跡方程,畫出方程所表示的曲線新疆學(xué)案王新敞【自主學(xué)習(xí)】我們已經(jīng)建立了曲線的方程、方程的曲線的概念。利用此概念就可以借助于坐標(biāo)系,用坐標(biāo)表示點(diǎn),把曲線看成滿足某種條件的點(diǎn)的集合或軌跡,用曲線上點(diǎn)的坐標(biāo)(,)xy所滿足的方程(,)0fxy?表示曲線,
【總結(jié)】新課標(biāo)高二數(shù)學(xué)同步測(cè)試—(2-1第三章)說明:本試卷分第一卷和第二卷兩部分,第一卷74分,第二卷76分,共150分;答題時(shí)間120分鐘.一、選擇題:在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的,請(qǐng)把正確答案的代號(hào)填在題后的括號(hào)內(nèi)(每小題5分,共50分).1.在平行六面體ABCD—A1B1C1D1中,M為AC與
2024-11-30 14:39
【總結(jié)】空間向量的坐標(biāo)一向量在軸上的投影與投影定理二向量在坐標(biāo)軸上的分量與向量的坐標(biāo)三向量的模與方向余弦的坐標(biāo)表示式一、向量在軸上的投影與投影定理.上的有向線段是軸,設(shè)有一軸uABuuAB.ABABABuuABuABAB==llllll,即的值,
2024-11-17 23:31
【總結(jié)】課題橢圓及標(biāo)準(zhǔn)方程(一)學(xué)習(xí)目標(biāo),經(jīng)歷從具體情境中抽象出橢圓的過程、橢圓標(biāo)準(zhǔn)方程的推導(dǎo)與化簡(jiǎn)過程.、標(biāo)準(zhǔn)方程及幾何圖形.、變化的觀點(diǎn)認(rèn)識(shí)橢圓,感知數(shù)學(xué)與實(shí)際生活的聯(lián)系,培養(yǎng)類比、數(shù)形結(jié)合的思想.學(xué)習(xí)重點(diǎn):橢圓定義、標(biāo)準(zhǔn)方程及幾何圖形。學(xué)習(xí)難點(diǎn):標(biāo)準(zhǔn)方程的推導(dǎo)。學(xué)習(xí)方法:以講學(xué)稿為依托的探究
2024-11-18 18:59
【總結(jié)】課題:空間向量基本定理學(xué)習(xí)目標(biāo):知識(shí)與技能:掌握空間向量基底的概念;了解空間向量的基本定理及其推論;了解空間向量基本定理的證明。過程與方法:培養(yǎng)學(xué)生類比、聯(lián)想、維數(shù)轉(zhuǎn)換的思想方法和空間想象能力。情感態(tài)度與價(jià)值觀:創(chuàng)設(shè)適當(dāng)?shù)膯栴}情境,從生活中的常見現(xiàn)象引入課題,引起學(xué)生極大的學(xué)習(xí)興趣,加強(qiáng)數(shù)學(xué)與生活實(shí)踐的聯(lián)系。學(xué)
【總結(jié)】§雙曲線及其標(biāo)準(zhǔn)方程【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.從具體情境中抽象出雙曲線的模型2.理解雙曲線的定義;3.掌握雙曲線的標(biāo)準(zhǔn)方程.【重點(diǎn)】理解雙曲線的定義【難點(diǎn)】掌握雙曲線的標(biāo)準(zhǔn)方程一、自主學(xué)習(xí)(一)復(fù)
2024-11-28 23:00
【總結(jié)】a、b、c是任意的非零平面向量,且它們相互不共線,下列命題:①(a·b)c-(c·a)b=0;②|a|-|b||a-b|;③(b·a)c-(c·a)b不與c垂直;④(3a+2b)·(3a-2b)=9|a|2-4|b|2.其中
2024-12-05 06:40
【總結(jié)】PF2F1§橢圓及其標(biāo)準(zhǔn)方程(1)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐。【學(xué)習(xí)目標(biāo)】1.從具體情境中抽象出橢圓的模型;2.掌握橢圓的定義;3.掌握橢圓的標(biāo)準(zhǔn)方程.【重點(diǎn)】理解橢圓的定義【難點(diǎn)】掌握橢圓的標(biāo)準(zhǔn)方程一、自主學(xué)習(xí)P3
2024-11-28 00:11