【總結(jié)】銅梁一中湯賢蓮學(xué)習(xí)目標(biāo);,通項公式和性質(zhì),增強應(yīng)用意識.重點:;,通項公式,性質(zhì)的應(yīng)用;難點:知識的靈活應(yīng)用.教學(xué)法:類比教學(xué)法.復(fù)習(xí)一一.等比數(shù)列的定義二.等比數(shù)列的通項公式an=a1qn-1an=amqn-mq0時,數(shù)列各項同號
2024-11-17 23:32
【總結(jié)】等比數(shù)列的概念一.填空題(1).111,,369(2).lg3,lg9,lg27(3).6,8,10(4).3,33,9???na中,32a?,864a?,那么它的公比q???na是等比數(shù)列,na0,又知
2024-11-15 17:58
【總結(jié)】等比數(shù)列的通項公式(2)陽光國際學(xué)校高中部數(shù)學(xué)組復(fù)習(xí)一.等比數(shù)列的定義二.等比數(shù)列的通項公式an=a1qn-1q0時,數(shù)列各項同號q0時,數(shù)列各項正負相間①{an}是等比數(shù)列?=q(q是常數(shù),n∈N*
2024-11-12 16:41
【總結(jié)】成才之路·數(shù)學(xué)路漫漫其修遠兮吾將上下而求索人教A版·必修5成才之路·數(shù)學(xué)·人教A版·必修5第二章數(shù)列第二章數(shù)列成才之路·數(shù)學(xué)·人教A版·必修5第二章
2025-04-30 04:33
【總結(jié)】名稱等差數(shù)列概念常數(shù)性質(zhì)通項通項變形dnaan)1(1???dknaakn)(???),(*Nkn?舊知回顧從第2項起,每一項與它前一項的差等于同一個常數(shù)公差(d)d可正,可負,且可以為零中項公式22baAAba????或
2025-02-21 09:52
【總結(jié)】等比數(shù)列第二課時思考:我們知道,等差數(shù)列{an}滿足下列公式(1)an=am+(n-m)d(m、n、p、q∈N*);(2)若m+n=p+q,則am+an=ap+aq那么,等比數(shù)列是否也有類似的公式呢?一、復(fù)習(xí):2.通項公式:an=a1qn-1*11(2)(
2024-11-17 19:44
【總結(jié)】等比數(shù)列的定義:一、知識回顧:1qaann??1通項公式:211??nnqaa等比中項:3abGabGbGa?????2成等比,,1+2+22+23+24+…+263=?:二、等比數(shù)列求和公式對①、②進行比較.S64=1+2+4+8+…+262+263①2S64=2+4+8+16
2025-08-16 01:49
【總結(jié)】主講老師:陳震等比數(shù)列的前n項和(一)復(fù)習(xí)引入1.等比數(shù)列的定義:2.等比數(shù)列通項公式:)0,(111????qaqaann)0,(1????qaqaamnmn復(fù)習(xí)引入3.{an}成等比數(shù)列)0,(1?????qNnqaa
2025-01-07 11:53
【總結(jié)】等比數(shù)列的前n項和(一)沙河二中高一數(shù)學(xué)組復(fù)習(xí)引入1.等比數(shù)列的定義:2.等比數(shù)列通項公式:)0,(111????qaqaann)0,(1????qaqaamnmn復(fù)習(xí)引入3.{an}成等比數(shù)列)0,(1?????qNnqaa
2024-11-17 19:50
【總結(jié)】等比數(shù)列1、觀察下列數(shù)列,指出它們的共同特征:(1)1,2,4,8,….(2)….(3)1,20,202,203,….(4)活期存入10000元,年利率是%,按照復(fù)利,5年內(nèi)各年末本利和分別是10000(1+),10000(1+)2,10000(1+)3,1
2025-07-21 17:18
【總結(jié)】固原一中高二數(shù)學(xué)組第六周集體備課初稿教學(xué)內(nèi)容:等比數(shù)列等比數(shù)列的前n項和教學(xué)時間:9月22日至9月28日主備(講)人:趙志祿課時教學(xué)設(shè)計:第一課時教學(xué)內(nèi)容等比數(shù)列——概念、通項、等比中項三維目標(biāo)一、知識與技能活中存在著一類特殊的數(shù)列,探索
2024-11-28 18:28
【總結(jié)】知識回顧1.等比數(shù)列的定義;2.等比數(shù)列的通項公式;3.等比數(shù)列的中項公式;4.等比數(shù)列的下標(biāo)公式。問題探究????。和項的前,請推導(dǎo)等比數(shù)列公比為,中,前項為:等比數(shù)列 探究nnnSnaqaa1)(其中 請你證明:,都不為,,且:如果 探究*nnnn
2024-11-18 08:10
【總結(jié)】等比數(shù)列的通項公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項。數(shù)列中的各項依次叫做這個數(shù)列的第1項(或首項)用表示,1a第2項用表示,2a…,第n項用表示,na…,數(shù)列的一般形式可以寫成:,1
2024-11-11 08:58
【總結(jié)】n重點難點n重點:等比數(shù)列的定義、通項公式、前n項的和及性質(zhì)n難點:等比數(shù)列的應(yīng)用n知識歸納n1.等比數(shù)列的定義n一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù),這個數(shù)列就叫做等比數(shù)列.qm-nn一、方程的思想n等比數(shù)列中有五個量a1、n、q、an、
2025-04-30 18:12
【總結(jié)】等比數(shù)列的通項公式教學(xué)目標(biāo):1.掌握通項公式,并能應(yīng)用公式解決有關(guān)問題;2.理解等比數(shù)列的性質(zhì),并學(xué)會其簡單應(yīng)用;3.會求兩個正數(shù)的等比中項,能利用等比中項的概念解決有關(guān)問題,提高分析、計算能力;4.通過學(xué)習(xí)推導(dǎo)等比數(shù)列的通項公式,掌握“疊乘法”.教學(xué)重點:等比數(shù)列的通項公式.教學(xué)難點:
2024-12-05 10:13