【總結(jié)】
2025-11-03 17:10
【總結(jié)】北師大版高中數(shù)學(xué)必修5第一章《數(shù)列》法門(mén)高中姚連省制作一、教學(xué)目標(biāo):1、知識(shí)與技能:⑴了解現(xiàn)實(shí)生活中存在著大量的等比數(shù)列求和的計(jì)算問(wèn)題;⑵探索并掌握等比數(shù)列前n項(xiàng)和公式;⑶用方程的思想認(rèn)識(shí)等比數(shù)列前n項(xiàng)和公式,利用公式知三求一;⑷體會(huì)公式推導(dǎo)過(guò)程中的分類(lèi)討論和轉(zhuǎn)化化歸的思想。2、過(guò)程與方法:⑴采用觀(guān)察、思考、類(lèi)比、歸納、探究得出結(jié)論的方法進(jìn)
2025-10-31 08:04
【總結(jié)】等比數(shù)列求和古印度舍罕王打算重賞大臣達(dá)依爾——國(guó)際象棋發(fā)明人。這位大臣說(shuō):“陛下,請(qǐng)您在這張棋盤(pán)上的第一格內(nèi),賞給我1粒麥子,在第2格內(nèi)給2粒,第3格內(nèi)給4粒,依次類(lèi)推,每小格內(nèi)的麥粒數(shù)都是前1小格的2倍,直到64個(gè)格子。請(qǐng)給我足夠的麥粒以實(shí)現(xiàn)上述要求吧!”國(guó)王一聽(tīng),認(rèn)為大臣的這個(gè)要求不高,就欣然同意了。
2025-10-25 15:44
【總結(jié)】復(fù)習(xí):等差數(shù)列等比數(shù)列定義通項(xiàng)公式性質(zhì)Sn等比數(shù)列前n項(xiàng)和公式(1)64個(gè)格子1223344551667788你想得到什么樣的賞賜?陛下,賞小人一些麥粒就可以。OK請(qǐng)?jiān)诘谝粋€(gè)格子放1顆麥粒請(qǐng)?jiān)诘诙€(gè)格子放2顆麥粒請(qǐng)?jiān)诘谌齻€(gè)格子放4顆麥粒請(qǐng)?jiān)诘谒?/span>
2025-01-17 07:55
【總結(jié)】等比數(shù)列的前n項(xiàng)和(二)課時(shí)目標(biāo)n項(xiàng)和公式的有關(guān)性質(zhì)解題.n項(xiàng)和公式解決實(shí)際問(wèn)題.1.等比數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)公比q≠1時(shí),Sn=__________=__________;當(dāng)q=1時(shí),Sn=_______.2.等比數(shù)列前n項(xiàng)和的性質(zhì):(1)連續(xù)m項(xiàng)的和(如Sm、S2
2024-12-05 06:35
【總結(jié)】課時(shí)教學(xué)設(shè)計(jì)首頁(yè)授課教師:授課時(shí)間:10年9月8日課題課型新授課第幾課時(shí)1課時(shí)教學(xué)目標(biāo)(三維)1..理解等比數(shù)列的前n項(xiàng)和公式的推導(dǎo)方法,體會(huì)轉(zhuǎn)化的思想;項(xiàng)和公式,并能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題,用方程的思想認(rèn)識(shí)等比數(shù)列前項(xiàng)和公式,利用公式知三求
2025-08-18 16:48
【總結(jié)】等比數(shù)列的前n項(xiàng)和(1)教學(xué)目標(biāo):等比數(shù)列前n項(xiàng)和公式及其獲取思路,會(huì)用等比數(shù)列的前n項(xiàng)和公式解決簡(jiǎn)單的與前n項(xiàng)和有關(guān)的問(wèn)題.2.提高學(xué)生的推理能力,培養(yǎng)學(xué)生應(yīng)用意識(shí).教學(xué)重點(diǎn):等比數(shù)列前n項(xiàng)和公式的理解、推導(dǎo)及應(yīng)用.教學(xué)難點(diǎn):應(yīng)用等差數(shù)列前n項(xiàng)和公式解決一些簡(jiǎn)單的有關(guān)問(wèn)題.
2024-12-05 10:13
【總結(jié)】等比數(shù)列的前n項(xiàng)和(2)教學(xué)目標(biāo):1.掌握等比數(shù)列前n項(xiàng)和公式.2.綜合運(yùn)用等比數(shù)列的定義、通項(xiàng)公式、性質(zhì)、前n項(xiàng)和公式解決相關(guān)的問(wèn)題.教學(xué)重點(diǎn):進(jìn)一步熟悉掌握等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的理解、推導(dǎo)及應(yīng)用.教學(xué)難點(diǎn):靈活應(yīng)用相關(guān)知識(shí)解決有關(guān)問(wèn)題.教學(xué)方法:采用啟發(fā)式、討
2024-11-20 01:05
【總結(jié)】復(fù)習(xí):等比數(shù)列{an}an+1an=q(定值)(1)等比數(shù)列:(2)通項(xiàng)公式:an=a1?qn-1(4)重要性質(zhì):n-man=am?qm+n=p+qan?aq?am=ap注:以上m,n,p,q均為自然數(shù)成等比數(shù)列(3)bGa,,)0(,2??ababG
2025-05-10 08:13
【總結(jié)】第三節(jié)等比數(shù)列及其前n項(xiàng)和基礎(chǔ)梳理從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的比等于同一常數(shù)公比q1.等比數(shù)列的定義如果一個(gè)數(shù)列那么這個(gè)數(shù)列叫做等比數(shù)列,這個(gè)常數(shù)叫做等比數(shù)列的,通常用字母表示.a1qn2.等比數(shù)列的通項(xiàng)公式設(shè)等比數(shù)列{an}的首項(xiàng)為a1
2025-11-03 01:24
【總結(jié)】等比數(shù)列的前n項(xiàng)和(一)自主學(xué)習(xí)知識(shí)梳理1.等比數(shù)列前n項(xiàng)和公式(1)公式:Sn=?????=?q≠1??q=1?.(2)注意:應(yīng)用該公式時(shí),一定不要忽略q=1的情況.2.等比數(shù)列前n項(xiàng)和的一個(gè)常用性質(zhì)在等比數(shù)列中,若等比數(shù)
2024-12-05 06:40
【總結(jié)】等比數(shù)列的前n項(xiàng)和(二)自主學(xué)習(xí)知識(shí)梳理1.等比數(shù)列{an}的前n項(xiàng)和為Sn,當(dāng)公比q≠1時(shí),Sn=________________=____________;當(dāng)q=1時(shí),Sn=________.2.等比數(shù)列前n項(xiàng)和的性質(zhì)(1)連續(xù)m項(xiàng)的和(如Sm、S2m-Sm、S3m-S2m),仍
2024-12-05 01:51
【總結(jié)】等比數(shù)列的前n項(xiàng)和A組基礎(chǔ)鞏固1.若數(shù)列{an}的前n項(xiàng)和為Sn=3n+a(a為常數(shù)),則數(shù)列{an}是()A.等比數(shù)列B.僅當(dāng)a=-1時(shí),是等比數(shù)列C.不是等比數(shù)列D.僅當(dāng)a=0時(shí),是等比數(shù)列解析:an=?????S1n=,Sn-Sn-1n=?????
2024-12-08 13:12
【總結(jié)】等比數(shù)列的前n項(xiàng)和教學(xué)過(guò)程推進(jìn)新課[合作探究]師在對(duì)一般形式推導(dǎo)之前,我們先思考一個(gè)特殊的簡(jiǎn)單情形:1+q+q2+?+qn=?師這個(gè)式子更突出表現(xiàn)了等比數(shù)列的特征,請(qǐng)同學(xué)們注意觀(guān)察生觀(guān)察、獨(dú)立思考、合作交流、自主探究師若將上式左邊的每一項(xiàng)乘以公比q,就出現(xiàn)了什么樣的結(jié)果呢?生q+q2+?+qn
【總結(jié)】第二章數(shù)列n項(xiàng)和(一)復(fù)習(xí),11??nnqaa).0,0(1??qa的通項(xiàng)公式:??na??na的定義:成等比數(shù)列3.bGa,,)0(,2??ababG,1qaann??qpnmaaaa???則有??)Nqp,n,(m,qpnm,?????且是等比數(shù)列若na
2024-11-24 13:18