【總結(jié)】知識(shí)回顧1.比較兩數(shù)大小的方法;2.不等式的基本性質(zhì)。回顧練習(xí)。,求證:最大,均為正數(shù),且,,,:設(shè) 練習(xí)cbdadcbaadcba????1練習(xí)2:某市環(huán)保局為增加城市的綠地面積,提出兩個(gè)投資方案:方案A為一次性投資500萬(wàn)元;方案B為第一年投資5萬(wàn)元,以后每年都比前一年增加
2025-03-12 14:54
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修5《基本不等式-實(shí)際應(yīng)用》審校:王偉?掌握建立不等式模型解決實(shí)際問(wèn)題.?教學(xué)重點(diǎn):?掌握建立不等式模型解決實(shí)際問(wèn)題教學(xué)目標(biāo)例1.一般情況下,建筑民用住宅時(shí)。民用住宅窗戶的總面積應(yīng)小于該住宅的占地面積,而窗戶的總面積與占地面積的比值越大
2025-01-15 12:36
【總結(jié)】不等關(guān)系與不等式第三課時(shí)t57301p2???????1.兩個(gè)實(shí)數(shù)大小關(guān)系的比較原理知識(shí)梳理a-b>0a>b?a-b=0a=b?a-b<0a<b?(1)a>bb<a(對(duì)稱性)?(2)a>b,b>ca>c;
2025-11-08 19:44
【總結(jié)】不等關(guān)系與不等式第二課時(shí)問(wèn)題提出?a-b>0a>b?a-b=0a=b?a-b<0a<b?“差比法”比較兩個(gè)代數(shù)式大小的一般步驟如何?作差→變形→判斷符號(hào)是不夠的,為了深入研究各種背景下的不等關(guān)系,我們必須建立相關(guān)的不等式理論,這是我們需要進(jìn)一
2025-11-08 12:02
【總結(jié)】
2025-11-03 16:46
【總結(jié)】第一篇:高中數(shù)學(xué)必修五不等關(guān)系與不等式教案 第三章不等式 必修5不等關(guān)系與不等式 一、教學(xué)目標(biāo) ,讓學(xué)生感受到現(xiàn)實(shí)生活中存在著大量的不等關(guān)系; (組)產(chǎn)生的實(shí)際背景的前提下,學(xué)習(xí)不等式的相關(guān)...
2025-10-19 17:51
【總結(jié)】(第一課時(shí))一、學(xué)習(xí)目標(biāo):1.比較實(shí)數(shù)大小的方法(1)作差法(2)作商法:2.不等式性質(zhì):性質(zhì)1性質(zhì)2性質(zhì)3性質(zhì)4性質(zhì)5二、典型例題例1.判斷下列命題是否正確,并說(shuō)明理由(1)若,則(2)若,,則(3)若,則或填空(1)若,則(2)若,則(3)若則
2025-08-17 08:52
【總結(jié)】均值不等式(2)學(xué)習(xí)目標(biāo)、幾何平均值的概念。比較大小、證明、求最值和實(shí)際問(wèn)題。:基本不等式的應(yīng)用:利用基本不等式證明不等式和求最值。自學(xué)提綱、幾何平均值的概念:(1)數(shù)形結(jié)合思想、“整體與局部”(2)配湊等技巧基礎(chǔ)
2025-08-04 09:52
【總結(jié)】高次不等式和分式不等式的解法一.高次不等式的解法對(duì)于不等式(x-a1)(x-a2)(x-an)0的解法是穿根標(biāo)線法a1a2an例1解下列不等式:(1)(x+1)(x-1)(x-2)0(2)x(x-1)2(x+1)3(x+2)0(3)(x-3)(x
2025-03-13 05:16
【總結(jié)】均值不等式如果a,b∈R,那么a2+b2≥2ab(當(dāng)且僅當(dāng)a=b時(shí)取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時(shí),當(dāng)時(shí),當(dāng)abba222??1.指出定理適用范圍:Rba?,2.強(qiáng)調(diào)取“=”的
【總結(jié)】人教版新課標(biāo)普通高中◎數(shù)學(xué)⑤必修第三章不等式概述不等關(guān)系與相等關(guān)系都是客觀事物的基本數(shù)量關(guān)系,,,在本章中,學(xué)生將通過(guò)具體情境,感受在現(xiàn)實(shí)世界和日常生活中存在著大量的不等關(guān)系,理解不等式(組)對(duì)于刻畫不等關(guān)系的意義和價(jià)值;掌握求解一元二次不等式的基本
2025-04-17 01:17
【總結(jié)】一元二次不等式及其解法復(fù)習(xí)::ax2+bx+c=0得根.二次函數(shù):y=ax2+bx+c的圖像.:ax2+bx+c0的解集.a≠0求解一元二次不等式的三步驟:例:解不等式-x2+10x-240解方程x2-10x+24=0得:x1=4,x2=6作出函數(shù)
2025-11-08 05:40
【總結(jié)】不等關(guān)系與不等式(第2課時(shí))學(xué)習(xí)目標(biāo)...合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情境問(wèn)題1:等式的性質(zhì)有哪些?請(qǐng)大家用符號(hào)表示出來(lái).問(wèn)題2:根據(jù)等式的這些性質(zhì),你能猜想不等式的類似性質(zhì)嗎?請(qǐng)大家加以探究.二、信息交流,揭示規(guī)律問(wèn)題3:上面得到的結(jié)論是否正確,需要我們給出證明
2025-11-30 03:41
【總結(jié)】?復(fù)習(xí)??a-b0ab?a-b=0a=b?a-bab?:?(1)比較兩個(gè)實(shí)數(shù)的大小,(2)推導(dǎo)不等式的性質(zhì),(3)不等式的證明,(4)解不等式的主要依據(jù)?
【總結(jié)】實(shí)際問(wèn)題不等關(guān)系不等式一元一次不等式一元一次不等式組不等式的性質(zhì)解不等式解集解集解集數(shù)軸表示數(shù)軸表示數(shù)軸表示解法解法實(shí)際應(yīng)用一,基本概念:1,不等式:2,不等號(hào):3,不等式的解:4,不等式的解集:5,解不等式:6,一元一次不等式:
2025-11-01 02:28