【總結】《不等式實際應用》第一課時課前熱身1、比較兩實數(shù)大小的常用方法△=b2-4ac△0△=0△0)的圖象ax2+bx+c=0(a0)的根ax2+bx+0(a0)的解集ax2
2025-03-13 05:16
【總結】應用基本不等式求最值江西師大附中黃潤華一、復習回顧基本不等式:(當且僅當a=b時取“=”號)(當且僅當a=b時取“=”號)2ababab???2222abab???22,,2abRabab???0,0,2ababab????已
2025-08-05 06:17
【總結】(一)、基本不等式不等式的性質(zhì)⑴(對稱性或反身性)兩個實數(shù)大小比較:abab0????⑴;abab0????⑵;abab0????⑶1、abba???abbcac????,abacbc?????abcdacbd???
2025-08-04 08:57
【總結】2abab??§:ICM2022會標趙爽:弦圖ADBCEFGHab22ab?不等式:一般地,對于任意實數(shù)a、b,我們有當且僅當a=b時,等號成立。222abab??新授:ABCDE(FGH)ab基本不等式:(
2025-08-04 15:14
【總結】第一篇:基本不等式與不等式基本證明 課時九基本不等式與不等式基本證明 第一部分:基本不等式變形技巧的應用 基本不等式在求解最值、值域等方面有著重要的應用,利用基本不等式時,關鍵在對已知條件的靈活...
2025-10-20 03:11
【總結】基本不等式應用一.基本不等式1.(1)若,則(2)若,則(當且僅當時取“=”)2.(1)若,則(2)若,則(當且僅當時取“=”)(3)若,則(當且僅當時取“=”),則(當且僅當時取“=”);若,則(當且僅當時取“=”)若,則(當且僅當時取“=”),則(當且僅當時取“=”)若,則(當且僅當時取“=”),則(當且僅當時取“=”)
2025-03-25 00:14
【總結】......基本不等式習專題之基本不等式做題技巧【基本知識】1.(1)若,則(2)若,則(當且僅當時取“=”)2.(1)若,則(2)若,則(當且僅當時取“=”)(3)若,則(當且僅當時取“=”)(4)當且僅當
2025-05-13 23:45
【總結】基本不等式的綜合應用基本不等式是人教版高中數(shù)學必修5第三章第四節(jié)的內(nèi)容,在高考中占有很重要的比重。而同學們在使用基本不等式的過程中往往會遇到各種各樣的題型而覺得無從入手。現(xiàn)結合教學中實際遇到的問題,淺談利用基本不等式求最值的各類題型的處理方法。題型一:直接利用基本不等式求最值理論依據(jù):(1)當且時,,當且僅當時等號成立,簡記為“和定積最大”(2)當且時,,當且僅當時等號成立,簡
2025-07-23 12:30
【總結】3.4不等式的實際應用學習目標理.2.重點是不等式的實際應用.3.難點是建立不等式問題模型,解決實際問題.課堂互動講練知能優(yōu)化訓練不等式的實際應用課前自主學案3.4課前自主學案溫故夯基1.作差比較法可以比較兩數(shù)(式)的大小,也可證明不等式.
2025-01-06 16:33
【總結】菜單課后作業(yè)典例探究·提知能自主落實·固基礎高考體驗·明考情新課標·文科數(shù)學(安徽專用)第四節(jié)基本不等式菜單課
【總結】基本不等式第2課時高一數(shù)學必修5第三章《不等式》利用求最值的要點:,,2abababR????(1)最值存在的條件的:一正,二定
2025-08-16 01:28
【總結】2abab??重要不等式定理1:如果,那么(當且僅當時取“=”號).Rba?,abba222??ba?我們可以用比較法證明.探究?你能從幾何的角度解釋定理1嗎??幾何解釋1-課本第
2025-07-24 07:30
【總結】邊城高級中學張秀洲1、了解兩個正數(shù)的算術平均數(shù)與幾何平均數(shù).2、理解定理1和定理2(基本不等式).3、掌握用基本不等式求一些函數(shù)的最值及實際的應用問題.自學教材P5—P8解決下列問題二、掌握用基本不等式求一些函數(shù)的最值及實際的應用問題.三、《教材》習題第5、6、7、8、9、10、11題.
2025-07-24 03:13
【總結】均值不等式(2)學習目標、幾何平均值的概念。比較大小、證明、求最值和實際問題。:基本不等式的應用:利用基本不等式證明不等式和求最值。自學提綱、幾何平均值的概念:(1)數(shù)形結合思想、“整體與局部”(2)配湊等技巧基礎
2025-08-04 16:51
2025-03-24 03:55