【總結(jié)】函數(shù)的奇偶性、映射一、選擇題:(每小題6分,共36分)。1.由下列命題:①偶函數(shù)的圖像一定和y軸相交;②奇函數(shù)圖像一定經(jīng)過原點(diǎn);③既是奇函數(shù)又是偶函數(shù)的函數(shù)一定是????0fxxR??;④偶函數(shù)的圖像關(guān)于y軸對稱,奇函數(shù)的圖像關(guān)于原點(diǎn)對稱。其中正確的是
2024-12-03 12:23
【總結(jié)】奇偶性班級:__________姓名:__________設(shè)計(jì)人__________日期__________課后練習(xí)【基礎(chǔ)過關(guān)】1.設(shè)在[-2,-1]上為減函數(shù),最小值為3,且為偶函數(shù),則在[1,2]上,最大值為3,最小值為-3,最大值為-3,最小值為32.已知函數(shù)是偶函數(shù),其圖象與軸有四個(gè)交點(diǎn)
2024-11-28 21:41
【總結(jié)】函數(shù)的奇偶性素材觀察下圖,思考并討論以下問題:(1)這兩個(gè)函數(shù)圖象有什么共同特征嗎?(2)相應(yīng)的兩個(gè)函數(shù)值對應(yīng)表是如何體現(xiàn)這些特征的?f(-3)=9=f(3)f(-2)=4=f(2)f(-1)=1=f(1)f(-3)=3=f(3)f(-2)=2=f(2)f(-1)=1=f(1)f(x)=x2f(x)=|x|
2024-11-17 06:23
【總結(jié)】數(shù)學(xué)高中數(shù)學(xué)必修1第二章函數(shù)單調(diào)性和奇偶性專項(xiàng)練習(xí)一、函數(shù)單調(diào)性相關(guān)練習(xí)題1、(1)函數(shù),{0,1,2,4}的最大值為_____.(2)函數(shù)在區(qū)間[1,5]上的最大值為_____,最小值為_____.2、利用單調(diào)性的定義證明函數(shù)在(-∞,0)上是增函數(shù).3、判斷函數(shù)在(-1,+∞)上的單調(diào)性,并給予證明.4、畫出函數(shù)的圖像,并指出函數(shù)的單調(diào)區(qū)間.5、已
2025-06-22 01:09
【總結(jié)】奇偶性1.已知函數(shù)f(x)=ax2+bx+c(a≠0)是偶函數(shù),那么g(x)=ax3+bx2+cx( ?。 .奇函數(shù) B.偶函數(shù) C.既奇又偶函數(shù) D.非奇非偶函數(shù)2.已知函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),且其定義域?yàn)椋踑-1,2a],則( ?。 .,b=0 B.a(chǎn)=-1,b=0 C.a(chǎn)=1,b=0 D.a(chǎn)=3,b=0
2025-04-04 05:11
【總結(jié)】第一篇:高中數(shù)學(xué)函數(shù)的基本性質(zhì)2函數(shù)奇偶性的概念教學(xué)案新人教A版必修1 函數(shù)奇偶性的概念 一、教學(xué)目標(biāo): ;; 二、.教學(xué)重點(diǎn):函數(shù)奇偶性的含義及其幾何意義、函數(shù)奇偶性的判斷及應(yīng)用;教學(xué)難點(diǎn):...
2024-10-14 05:14
【總結(jié)】§1.3.2函數(shù)的奇偶性一.教學(xué)目標(biāo):1.理解函數(shù)的奇偶性及其幾何意義;學(xué)會運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì);學(xué)會判斷函數(shù)的奇偶性;2.通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生觀察、歸納、抽象的能力,滲透數(shù)形結(jié)合的數(shù)學(xué)思想.3.通過函數(shù)的奇偶性教學(xué),培養(yǎng)學(xué)生從特殊到一般的概括歸納問題的能力.二.教學(xué)重點(diǎn)和難點(diǎn):
2024-12-01 09:22
【總結(jié)】第十二課時(shí)函數(shù)的單調(diào)性和奇偶性【學(xué)習(xí)導(dǎo)航】學(xué)習(xí)要求:1、熟練掌握函數(shù)單調(diào)性,并理解復(fù)合函數(shù)的單調(diào)性問題。2、熟練掌握函數(shù)奇偶性及其應(yīng)用。3、學(xué)會對函數(shù)單調(diào)性,奇偶性的綜合應(yīng)用。【精典范例】一、利用函數(shù)單調(diào)性求函數(shù)最值例1、已知函數(shù)y=f(x)對任意x,y∈R均為f(x)+f(y)=f(x+y),且當(dāng)x0時(shí),f(x)0,f(1)=-.(1
2025-06-07 23:22
【總結(jié)】函數(shù)的基本性質(zhì)——奇偶性云陽中學(xué)高一備課組1.在初中學(xué)習(xí)的軸對稱圖形和中心對稱圖形的定義是什么?復(fù)習(xí)回顧2.請分別畫出函數(shù)f(x)=x3與g(x)=x2的圖象.1.在初中學(xué)習(xí)的軸對稱圖形和中心對稱圖形的定義是什么?復(fù)習(xí)回顧1.奇函數(shù)、偶函數(shù)的定義講授新課
2024-12-28 01:48
【總結(jié)】函數(shù)的奇偶性南京市三十九中學(xué)xyO如何用數(shù)學(xué)語言表述函數(shù)圖象關(guān)于y軸對稱呢?y=f(x)函數(shù)圖象關(guān)于y軸對稱.1xyOyxOxO1yxyOy=f(x)A(x0,f(x0))點(diǎn)A關(guān)于y軸的對稱點(diǎn)A’的坐標(biāo)是_
2024-11-17 15:06
【總結(jié)】函數(shù)的概念(1)初中函數(shù)的概念設(shè)在某變化過程中有兩個(gè)變量x與y,如果對于x的每一個(gè)值,y都有唯一的值與它對應(yīng),那么就說y是x的函數(shù),x叫做自變量,y叫做因變量。xyxxyxy1.32??????以下的函數(shù)你認(rèn)識嗎?初中函數(shù)的概念設(shè)在某變化過程中有兩
2024-11-17 05:41
【總結(jié)】函數(shù)的奇偶性y=x2-xx當(dāng)x1=1,x2=--1時(shí),f(-1)=f(1)當(dāng)x1=2,x2=--2時(shí),f(-2)=f(2)對任意x,f(-x)=f(x)xy1?偶函數(shù)定義:如果對于函數(shù)定義域內(nèi)的任意一個(gè)x,都有f(-x)=f(x)。那么f(x)就叫偶函數(shù)。奇函數(shù)定義:如果對于
2024-11-18 13:34
【總結(jié)】函數(shù)的奇偶性一、對稱區(qū)間(關(guān)于原點(diǎn)對稱)[a,b]關(guān)于原點(diǎn)的對稱區(qū)間為[-b,-a](-∞,0)關(guān)于原點(diǎn)的對稱區(qū)間為(0,+∞)[-1,1]關(guān)于原點(diǎn)的對稱區(qū)間為[-1,1]二、奇函數(shù)與偶函數(shù)(一)奇函數(shù)的定義:對于任意函數(shù)f(x)在其對稱區(qū)間(關(guān)于原點(diǎn)對稱)內(nèi),對于x∈A,都有f(-x)=-f(x),則f(x)為奇函數(shù)。(二)偶函數(shù)的定義:對于任意函數(shù)f(x)
2025-04-16 12:09
【總結(jié)】第二課時(shí)進(jìn)位制(9)化為十進(jìn)制數(shù)為()解析:101(9)=1×92+0×91+1×90=82.答案:C189化為三進(jìn)制數(shù),則末位數(shù)是()解析:則末位數(shù)是0.答案:Ak進(jìn)制的數(shù)132與十進(jìn)制的數(shù)30相等,
2024-12-08 20:24
【總結(jié)】進(jìn)位制教學(xué)建議本課時(shí)的主要內(nèi)容是進(jìn)位制的概念以及對一個(gè)數(shù)可以做不同進(jìn)位制間的轉(zhuǎn)換,十進(jìn)制是進(jìn)位制之間相互轉(zhuǎn)換的橋梁,在學(xué)習(xí)中要充分把握十進(jìn)制的橋梁作用.另外教材通過實(shí)例將不同進(jìn)位制的相互轉(zhuǎn)換用程序框圖和算法語句程序表示了出來,加深了學(xué)生對算法的理解.建議教師通過生活中的實(shí)例闡述不同進(jìn)位制在生活中的廣泛應(yīng)用,以加深學(xué)生對進(jìn)位制概念的理解,并通
2024-12-09 03:45