【總結(jié)】 圓心角、圓周角 圓心角 【知識與技能】 . . 【過程與方法】 通過對圓心角的概念及定理的探究,從而認(rèn)識到幾何中不同量之間的對等關(guān)系. 【情感態(tài)度】 在探究過程中體驗獲取新知的...
2025-04-05 06:00
【總結(jié)】弧、弦、圓心角
2025-06-15 20:29
【總結(jié)】課題:垂直于弦的直徑復(fù)習(xí)提問:1、什么是軸對稱圖形?我們在直線形中學(xué)過哪些軸對稱圖形?如果一個圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個圖形叫軸對稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對稱圖形呢?圓是軸對稱圖形,經(jīng)過圓心的每一條直線都是它們的對稱軸.看一看
2024-11-23 10:46
【總結(jié)】第2課時圓的元素之間的關(guān)系1.圓是中心對稱圖形中心對稱圓心重合(1)圓是__________圖形,對稱中心為______.(2)圓的旋轉(zhuǎn)不變性:圓具有旋轉(zhuǎn)不變的特性.即一個圓繞著它的圓心旋轉(zhuǎn)任意一個角度,都能與原來的圖形______.圓的中心對稱性是其旋轉(zhuǎn)不變性的特例.2.圓心角、弧、弦、弦
2024-11-18 19:07
【總結(jié)】第二十四章圓圓的有關(guān)性質(zhì)總結(jié)反思目標(biāo)突破第二十四章圓知識目標(biāo)弧、弦、圓心角知識目標(biāo)弧、弦、圓心角通過旋轉(zhuǎn)一個圓心角,探究出同圓中弧、弦、圓心角之間的關(guān)系,并運(yùn)用這種關(guān)系計算或證明有關(guān)問題.目標(biāo)突破目標(biāo)會利用“弧、弦、圓心角之間的關(guān)系”進(jìn)行證明例教材例3
2025-06-12 00:19
【總結(jié)】圓的對稱性復(fù)習(xí)提問:1、什么是軸對稱圖形?我們在學(xué)過哪些軸對稱圖形?如果一個圖形沿一條直線對折,直線兩旁的部分能夠互相重合,那么這個圖形叫軸對稱圖形。如線段、角、等腰三角形、矩形、菱形、等腰梯形、正方形2、我們所學(xué)的圓是不是軸對稱圖形呢?.圓的對稱性圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能
2024-10-18 06:59
【總結(jié)】弧、弦、圓心角1.若AB︵,CD︵是同一圓上的兩段弧,且AB︵=CD︵,則弦AB與弦CD之間的關(guān)系是(C)A.AB<CDB.AB>CDC.AB=CDD.不能確定【解析】同圓或等圓中等弧所對的弦相等.2.如圖24-1-27所示,AB是⊙O的直徑,C,D是BE︵
2024-12-03 05:51
【總結(jié)】北師大版九年級下冊數(shù)學(xué)()①垂直弦的直徑平分這條弦②相等的圓心角所對的弧相等③圓既是軸對稱圖形,又是中心對稱圖形A.①②B.①③C.②③D.①②③?答:相等.答:頂點在圓心的角叫圓心角.?B情境導(dǎo)入本節(jié)目標(biāo)..
2025-06-20 17:31
【總結(jié)】北師大版九年級下冊數(shù)學(xué)圓周角:頂點在圓上,它的兩邊分別與圓還有另一個交點,像這樣的角,叫做圓周角.圓周角定理圓周角的度數(shù)等于它所對弧上的圓心角度數(shù)的一半.ABC●O●OABC●OABC●OABC情境導(dǎo)入本節(jié)目標(biāo),會熟練運(yùn)用推論解決問題.2.培養(yǎng)學(xué)生觀察、分析及理解問題的能力
【總結(jié)】圓的對稱性(二)白銀十中李再義教學(xué)目標(biāo):(1)理解圓的旋轉(zhuǎn)不變性,掌握圓心角、弧、弦、弦心距之間關(guān)系定理推論及應(yīng)用;(2)培養(yǎng)學(xué)生實驗、觀察、發(fā)現(xiàn)新問題,探究和解決問題的能力;(3)通過教學(xué)內(nèi)容向?qū)W生滲透事物之間可相互轉(zhuǎn)化的辯證唯物主義教育,滲透圓的內(nèi)在美(圓心
2024-11-23 13:04
【總結(jié)】第二十四章圓圓的有關(guān)性質(zhì)第二十四章圓弧、弦、圓心角弧、弦、圓心角探究新知活動1知識準(zhǔn)備如圖24-1-10,△ABC繞點A逆時針旋轉(zhuǎn)60°得到△AB′C′,則△ABC________△AB′C′,所以BC=________,∠CAB=________.
2025-06-16 23:40
2025-06-17 19:13
【總結(jié)】弧、弦、圓心角圓是中心對稱圖形嗎?它的對稱中心在哪里?·一、思考圓是中心對稱圖形.它的對稱中心是圓心.·圓心角:我們把頂點在圓心的角叫做圓心角.OBA二、概念如圖,∠AOB=∠將圓心角∠AOB繞圓心O旋轉(zhuǎn)到∠
2025-06-21 06:40
【總結(jié)】九年級下冊第三章圓的對稱性.,圓心角、弦、弧中有一個量相等就可以推出其他的兩個量對應(yīng)相等,以及它們在解題中的應(yīng)用.一、圓的對稱性說一說(1)圓是軸對稱圖形嗎?如果是,它的對稱軸是什么?你能找到多少條對稱軸?(2)你是怎么得出結(jié)論的?圓的對稱性:
2025-05-06 23:23
【總結(jié)】民樂縣第二中學(xué)王愛萍回顧與思考AOBN100o,1、如圖在⊙O中,∠AOB=100o,則AB的度數(shù)為______ANB的度數(shù)為______。⌒260o在射門游戲中,球員射中球門的難易與他所處的位
2024-12-07 16:28