【總結(jié)】一、問題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為21()dTTvtt?設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv
2025-08-11 08:39
【總結(jié)】第4講定積分的概念與微積分基本定理A級基礎(chǔ)演練(時間:30分鐘滿分:55分)1.(2021·大連模擬)已知f(x)為偶函數(shù)且??06f(x)dx=8,則??6-6f(x)dx等于().A.0B.4C.8D.16解析因為f(x)為偶函數(shù),圖象關(guān)
2024-12-08 14:27
【總結(jié)】習(xí)題四A1用積分公式直接求下列不定積分。(1)cxxxdxxxxdxxxxx???????????????22123233421829)49(149(2)cxxdxxxdxxxx?????????21252123252)()1((3)cxxdxxxdxxxx???????????arc
2025-01-09 08:39
【總結(jié)】問題???dxxex解決思路利用兩個函數(shù)乘積的求導(dǎo)法則.設(shè)函數(shù))(xuu?和)(xvv?具有連續(xù)導(dǎo)數(shù),??,vuvuuv???????,vuuvvu?????,dxvuuvdxvu??????.duvuvudv????分部積分公式第三節(jié)分部積分法容易計算.例1求積分.
2025-07-22 11:11
【總結(jié)】微積分積分公式積分上限的函數(shù)及其導(dǎo)數(shù)設(shè)函數(shù)f(x)在區(qū)間[a,b]上連續(xù),并且設(shè)x為[a,b]上的一點.現(xiàn)在我們來考察f(x)在部分區(qū)間[a,x]上的定積分,我們知道f(x)在[a,x]上仍舊連續(xù),因此此定積分存在。如果上限x在區(qū)間[a,b]上任意變動,則對于每一個取定的x值,定積分有一個對應(yīng)值,所以它在[a,
2025-08-12 17:45
【總結(jié)】導(dǎo)數(shù)與積分(定積分求面積):(答案見筆記本)1.已知函數(shù)在處有極值2,(1)求函數(shù)在閉區(qū)間上的最值;(2)求曲線與所圍成的圖形的面積.2.已知函數(shù)在時取得極值-54,(1)求、的值;(2)求曲線與軸圍成的圖形的面積.3.求拋物線,直線,所圍成的圖形的面積.
2025-08-17 10:58
【總結(jié)】1-1
2025-01-09 08:40
【總結(jié)】習(xí)題1—1解答1.設(shè),求解;2.設(shè),證明:3.求下列函數(shù)的定義域,并畫出定義域的圖形:(1)(2)(3)(4)yx11-1-1O解(1)yx11-1-1O(2)yx-a-bcOzab
2025-06-20 03:33
【總結(jié)】1-11.(1)[-3,3];(2)(-∞,0)∪(2,+∞);(3)(-2,1);(4)(-1.01,-1)∪(-1,0.99)2.(1)[-1,0)∪(0,1);(2)(1,2];(3)[-6,1).3.(1)(-∞,1)∪
2025-01-09 19:52
【總結(jié)】1積分方法與定積分的應(yīng)用1.複習(xí)不定積分和微分的關(guān)係2.定積分和面積的關(guān)係3.積分法則4.實際的應(yīng)用21.複習(xí)不定積分和微分的關(guān)係?我們先複習(xí)有關(guān)不定積分(IndefiniteIntegral)的定義。不定積分又稱為反微分(Antiderivative),其定義如下:?定義1:
2025-08-23 09:25
【總結(jié)】定積分的換元積分法與分部積分法教學(xué)目的:掌握定積分換元積分法與分部積分法 難 點:定積分換元條件的掌握重 點:換元積分法與分部積分法由牛頓-萊布尼茨公式可知,定積分的計算歸結(jié)為求被積函數(shù)的原函數(shù).在上一章中,我們已知道許多函數(shù)的原函數(shù)需要用換元法或分部積分法求得,因此,換元積分法與分部積分法對于定積分的計算也是非常重要的.1.定積分換元法定理假設(shè)(1)函數(shù)在
2025-08-22 18:59
【總結(jié)】《微積分》各章習(xí)題及解答第一章函數(shù)極限與連續(xù)一、填空題1、已知,則。2、。3、時,是的階無窮小。4、成立的為。5、。6、在處連續(xù),則。7、。8、設(shè)的定義域是,則的定義域是__________。9、函數(shù)的反函數(shù)為_________。10、設(shè)
【總結(jié)】旋轉(zhuǎn)體就是由一個平面圖形繞這平面內(nèi)一條直線旋轉(zhuǎn)一周而成的立體.這直線叫做旋轉(zhuǎn)軸.圓柱圓錐圓臺二、體積1.旋轉(zhuǎn)體的體積一般地,如果旋轉(zhuǎn)體是由連續(xù)曲線)(xfy?、直線ax?、bx?及x軸所圍成的曲邊梯形繞x軸旋轉(zhuǎn)一周而成的立體,體積為多少?取積分變量為x,],[bax?在],[
2025-04-21 03:33
【總結(jié)】微積分的起源與發(fā)展主要內(nèi)容:一、微積分為什么會產(chǎn)生二、中國古代數(shù)學(xué)對微積分創(chuàng)立的貢獻(xiàn)三、對微積分理論有重要影響的重要科學(xué)家四、微積分的現(xiàn)代發(fā)展一、微積分為什么會產(chǎn)生微積分是微分學(xué)和積分學(xué)的統(tǒng)稱,它的萌芽、發(fā)生與發(fā)展經(jīng)歷了漫長的時期。公元前三世紀(jì),古希臘的阿基米德在研究解決拋物弓形的面積、球和球冠面積、螺線下面積和旋轉(zhuǎn)雙曲體的體積的問題中,就隱含著近代積分學(xué)的思
2025-06-29 13:20
【總結(jié)】由親乃滴先輩們整理?! ≈?jǐn)以此文獻(xiàn)給所有堅持考前突擊的朋友們!??
2025-08-21 21:58