【總結】九、如下圖,△ABC中,AD∥BC,連結CD交AB于E,且AE∶EB=1∶3,過E作EF∥BC,交AC于F,S△ADE=2cm2,求S△BCE,S△AEF.十一、下圖中,E為平行四邊形ABCD的對角線AC上一點,AE∶EC=1∶3,BE的延長線交CD的延長線于G,交AD于F,求證:BF∶FG=1∶2. 26.(2010年長沙)如圖,在平面直角坐標系中,矩形OABC的兩邊分別在x軸和y
2025-03-25 06:31
【總結】1、什么叫做相似三角形?2、你有幾種方法判定兩個三角形有相似三角形?對應邊成比例,對應角相等的三角形是相似三角形。兩個三角形相似,除了對應邊成比例、對應角相等之外,還可以得到許多有用的結論.例如,在圖24.3.9中,△ABC和△A′B′C′是兩個相似三角形,相似比為k,其中AD、A′D′分別為BC、B′C′邊上
2024-11-24 13:48
【總結】相似三角形應用舉例(2)1、張華同學的身高為,某一時刻他在陽光下的影子長為2m,與他鄰近的一棵樹的影子長為6m,則這棵樹的高為()A.B.C.D.復習復習相似三角形的應用:利用三角形的相似,解決不能直接
2025-08-01 17:44
【總結】第二十七章相似相似三角形應用舉例(2)一、新課引入利用相似可以解決生活中的問題,計量一些無法直接測量的物體的長度.解題的關鍵在于構建相似三角形.例5左、右并排的兩棵大樹的高分別是AB=8m和CD=12m,兩樹根部的距離BD=51.6m的人沿著正對這兩棵樹的一條水平直路L從左向
【總結】分組分享活動:利用相似三角形的有關知識測量旗桿的高度,自主學習教材P103-104?方法1:利用陽光下的影子:同一時刻的物高和影長CAEBD∴=ABEBCDBD即=人高物高人影物影∵太陽的光線是平行的∴AE∥CB∴∠AEB=
2025-08-15 21:08
【總結】相似三角形的性質(2)ABCEFG相似三角形的性質對應角相等對應邊成比例對應高對應中線對應角平分線周長比等于相似比面積比等于相似比的平方的比等于相似比1、兩個相似三角形的一對對應高分
2024-11-09 01:48
【總結】專題課堂(六)相似三角形思想方法第23章圖形的相似一、數(shù)形結合思想【例1】如圖,在平面直角坐標系中,A(1,0),B(3,0),C(0,3),D(2,-1),P(2,2).(1)△ABC與△ADP相似嗎?請說明理由;(2)在圖中標出點D關于y軸的對稱點D′,連結AD′,CD′,判斷△A
【總結】ABCEF如圖,在正方形ABCD中,E為BC上任意一點(與B、C不重合)∠AEF=90°.觀察圖形:D△ABE與△ECF是否相似?并證明你的結論。△ABE∽△ECF問題1:(1)點E為BC上任意一點,若∠B=∠C=60°,∠AEF=∠
【總結】相似三角形的判定(說課稿)南漳縣高級中學陳應宏一、教材分析二、教學方法三、學法指導四、教學過程五、教學評價一、教材分析(一)、教材的地位和作用“探索相似三角形的條件”既是三角形基本概念和性質的延伸和全等三角形的拓展,又是今后證明線段成比例,研究相似多邊形性質的重要工具.因此是
2025-07-20 04:14
【總結】初中數(shù)學八年級下冊(蘇科版)相似三角形的性質(1)建湖縣高作中學薛金陵舊知回顧1.相似三角形的定義及其作用?2.什么叫做相似比?各角對應相等,各邊對應成比例的兩個三角形叫做相似三角形;相似三角形對應邊的比叫做相似比;1.在如圖所示的方格中,回答下列問題:(1)ΔABC∽ΔDEF嗎?為什么?
2025-07-23 08:37
【總結】倍速課時學練如果兩個三角形相似,它們的周長之間有什么關系?兩個相似多邊形呢?如果△ABC∽△A'B'C',相似比為k,那么kACCACBBCBAAB???''''''因此AB=kA'B',BC=kB'C',CA
2025-07-25 19:15
【總結】復習課:如圖,△ABC中,P是AB邊上的一點,連結CP.滿足什么條件時△ACP∽△ABC?解:⑴∵∠A=∠A,∴當∠1=∠ACB(或∠2=∠B)時,△ACP∽△ABC⑵∵∠A=∠A,∴當AC:AP=AB:AC時,△ACP∽△ABC
2025-08-05 10:09
2024-11-24 17:38
【總結】第二十七章相似相似三角形的周長與面積相似三角形的判定方法:1.相似三角形的定義:對應角相等、對應邊成比例的三角形叫做相似三角形.(SSS)(AA)(SAS)(HL)2.相似多邊形的對應角、對應邊的性質.相似多邊形的對應角相等、對應邊成
2024-11-24 16:37
【總結】相似三角形習題課一、基本圖形幾何圖形大都是由基本圖形復合而成,因此熟悉三角形相似的基本圖形,有助于快速準確地識別相似三角形,從而順利地找到解題的思路和方法。(一)平行型ABCDE如圖,若DE∥BC,則△ADE∽△ABC.A型X型ABCED
2025-08-05 10:24