【總結(jié)】數(shù)學(xué):3.3《雙曲線》課件PPT(北師大版選修2-1)第一課時(shí)?學(xué)習(xí)目標(biāo)?情境設(shè)置?探索研究?反思應(yīng)用?歸納總結(jié)?作業(yè)學(xué)習(xí)目標(biāo)?、標(biāo)準(zhǔn)方程及其求法;?、焦距、焦點(diǎn)位置與方程關(guān)系;?.情境設(shè)置?橢圓的定義?把平面內(nèi)與兩個(gè)定點(diǎn)
2024-11-23 00:46
【總結(jié)】一、回顧1、橢圓的第一定義是什么?2、橢圓的標(biāo)準(zhǔn)方程,焦點(diǎn)坐標(biāo)是什么?定義圖象方程焦點(diǎn)關(guān)系y·oxF1F2··xyoF1F2··x2a2+y2b2=1
2025-08-16 01:11
【總結(jié)】第三節(jié)雙曲線:平面內(nèi)到兩個(gè)定點(diǎn)F1、F2的距離的______________________________的點(diǎn)的軌跡是雙曲線.這兩個(gè)定點(diǎn)叫做雙曲線的________,兩焦點(diǎn)的距離叫雙曲線的________,即若點(diǎn)P為雙曲線上任意一點(diǎn),則有|PF1-PF2|=,________,若2a=F1F2,則P
2024-11-12 19:05
【總結(jié)】《雙曲線》練習(xí)題一、選擇題:1.已知焦點(diǎn)在x軸上的雙曲線的漸近線方程是y=±4x,則該雙曲線的離心率是( A )A. B.C.D.2.中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線的實(shí)軸與虛軸相等,一個(gè)焦點(diǎn)到一條漸近線的距離為,則雙曲線方程為( B )A.x2﹣y2=1 B.x2﹣y2=2 C.x2﹣y2= D.x2﹣y2=3.在平面直角
2025-06-23 15:36
【總結(jié)】關(guān)于x軸、y軸、原點(diǎn)對(duì)稱圖形方程范圍對(duì)稱性頂點(diǎn)離心率)0(1????babyax2222A1(-a,0),A2(a,0)A1(0,-a),A2(0,a)),b(abxay001????2222Rxayay????,或關(guān)于x軸、y軸、原點(diǎn)對(duì)稱)1
2024-11-17 17:10
【總結(jié)】雙曲線的標(biāo)準(zhǔn)方程(第一課時(shí)) ?。ㄒ唬┙虒W(xué)目標(biāo) 掌握雙曲線的定義,會(huì)推導(dǎo)雙曲線的標(biāo)準(zhǔn)方程,能根據(jù)條件求簡(jiǎn)單的雙曲線標(biāo)準(zhǔn)方程. (二)教學(xué)教程 【復(fù)習(xí)提問】 由一位學(xué)生口答,教師板書. 問題:橢圓的第一定義是什么? 問題:橢圓的標(biāo)準(zhǔn)方程是怎樣的? 【新知探索】 .雙曲線的概念 如果把上述定義中的“距離的和”改為“距離的差”,那么點(diǎn)的軌跡
2025-07-14 19:04
【總結(jié)】圓錐曲線中的最值問題復(fù)習(xí)1、橢圓及雙曲線第一定義;2、橢圓及雙曲線第二定義;3、拋物線定義例1、已知橢圓171622??yx及點(diǎn)M(1,3),F1、F2分別為橢圓的左、右焦點(diǎn),A為橢圓上的任意一點(diǎn),求:①∣AM│+∣AF2│
2025-08-16 00:56
【總結(jié)】雙曲線的幾何性質(zhì)濟(jì)源三中盧新民一、知識(shí)再現(xiàn)前面我們學(xué)習(xí)了橢圓的簡(jiǎn)單的幾何性質(zhì):范圍、對(duì)稱性、頂點(diǎn)、離心率.我們來共同回顧一下橢圓
2024-11-18 10:03
【總結(jié)】上海市控江中學(xué)柳敏一、復(fù)習(xí)回顧思考并回答下列問題1、橢圓的定義是什么?2、橢圓定義中有哪些注意點(diǎn)?3、橢圓的標(biāo)準(zhǔn)方程是怎樣的?二、講授新課問題:如果把橢圓定義中的和改成差:12||||2PFPFa??或21||||2PFPFa??,即:12||
2024-11-12 18:20
【總結(jié)】《雙曲線的幾何性質(zhì)》教學(xué)目標(biāo)?(對(duì)稱性、范圍、頂點(diǎn)、離心率);?.三.教學(xué)重、難點(diǎn):目標(biāo)1;數(shù)形結(jié)合思想的貫徹,運(yùn)用曲線方程研究幾何性質(zhì).2、對(duì)稱性雙曲線的幾何性質(zhì))0,0(12222????ba
2024-11-10 00:28
【總結(jié)】雙曲線的離心率1.已知雙曲線(,)的一條漸近線方程為,則雙曲線的離心率為()2.過雙曲線的右焦點(diǎn)作一條直線,當(dāng)直線斜率為2時(shí),直線與雙曲線左、右兩支各有一個(gè)交點(diǎn);當(dāng)直線斜率為3時(shí),直線與雙曲線右支有兩個(gè)不同的交點(diǎn),則雙曲線離心率的取值范圍為()3.過雙曲線(a>0,b>0)的左焦點(diǎn)F(﹣c,0)(c>0),作圓的切線,切點(diǎn)為E,延長(zhǎng)FE交雙曲線右支于點(diǎn)P,若,則雙曲線的
2025-08-05 03:37
【總結(jié)】白銀市第三中學(xué)張建平一、雙曲線小結(jié)雙曲線知識(shí)結(jié)構(gòu)圖標(biāo)準(zhǔn)方程幾何性質(zhì)定義共軛雙曲線等軸雙曲線漸近線定義標(biāo)準(zhǔn)方程第一定義:
2024-11-12 16:45
【總結(jié)】下頁上頁首頁小結(jié)結(jié)束下頁上頁首頁小結(jié)結(jié)束1.橢圓的定義和等于常數(shù)2a(2a|F1F2|)的點(diǎn)的軌跡.平面內(nèi)與兩定點(diǎn)F1、F2的距離的2.引入問題:差等于常數(shù)
【總結(jié)】第二講:雙曲線考綱要求:圓錐曲線①了解圓錐曲線的實(shí)際背景,了解圓錐曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用.②掌握橢圓、拋物線的定義、幾何圖形、標(biāo)準(zhǔn)方程及簡(jiǎn)單性質(zhì).③了解雙曲線的定義、幾何圖形和標(biāo)準(zhǔn)方程,知道它的簡(jiǎn)單幾何性質(zhì).④了解圓錐曲線的簡(jiǎn)單應(yīng)用.⑤理解數(shù)形結(jié)合的
2024-11-10 23:01
【總結(jié)】雙曲線的定義與標(biāo)準(zhǔn)方程(2)線.的點(diǎn)的軌跡叫做雙曲|)FF|數(shù)2a(2a的差的絕對(duì)值等于常的距離F,平面內(nèi)與兩個(gè)定點(diǎn)F2121?雙曲線定義:一.aPFPF221??二.雙曲線的標(biāo)準(zhǔn)方程:)0,(12222???babyax)0,(12222???bab
2025-07-22 14:06