【總結】.第一章三角函數一、選擇題1.已知a為第三象限角,則所在的象限是().A.第一或第二象限 B.第二或第三象限C.第一或第三象限 D.第二或第四象限2.若sinθcosθ>0,則θ在().A.第一、二象限 B.第一、三象限C.第一、四象限 D.第二、四象限3.sincostan=(
2025-08-05 18:26
【總結】第一章 三角函數一、選擇題1.已知為第三象限角,則2所在的象限是().A.第一或第二象限B.第二或第三象限C.第一或第三象限D.第二或第四象限2.若sin
2025-08-05 19:28
【總結】高中數學必修四三角函數檢測題一選擇題:本大題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列不等式中,正確的是()A.tanB.sinC.sin(π-1)sin1oD.cos2.函數的單調遞減區(qū)間是()A. B.C. D.()
2025-04-04 05:05
【總結】三角函數公式大全一謎槢痌激乼2014-11-28優(yōu)質解答倒數關系: tanα·cotα=1 sinα·cscα=1 cosα·secα=1 商的關系: sinα/cosα=tanα=secα/cscα cosα/sinα=cotα=cscα/secα 平方關系: sin^2(α)+cos^2(α)
2025-07-24 18:49
【總結】天馬行空官方博客:;QQ:1318241189;QQ群:175569632高考數學必勝秘訣(4)三角函數1、角的概念的推廣:平面內一條射線繞著端點從一個位置旋轉到另一個位置所的圖形。按逆時針方向旋轉所形成的角叫正角,按順時針方向旋轉所形成的角叫負角,一條射線沒有作任何旋轉時,稱它形成一個零角。射線的起始位置稱為始邊,終止位置稱為終邊。2、象限
2025-01-07 21:02
【總結】1.三角函數的誘導公式設0°≤α≤90°,對于任意一個0°到360°的角β,以下四種情形中有且僅有一種成立.β=?????α,當β∈[0°,90°],180°-α,當β∈[90°,180°],
2024-12-05 10:17
【總結】課題:三角函數的誘導公式(1)班級:姓名:一:學習目標1.通過學生的探究,明了三角函數的誘導公式的來龍去脈,理解誘導公式的推導過程;2.通過誘導公式的具體運用,熟練正確地運用公式解決一些三角函數的求值、化簡和證明問題;二:課前預習教學重點:
2024-11-20 01:06
【總結】三角函數公式兩角和公式sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsinBcos(A-B)=cosAcosB+sinAsinBtan(A+B)=tan(A-B)=cot(A+B)=cot(A-B)=倍角公式tan2A
2025-07-23 20:29
【總結】三角公式匯總一、任意角的三角函數在角的終邊上任取一點,記:,正弦:余弦:正切:余切:正割: 余割:二、同角三角函數的基本關系式倒數關系:,,。商數關系:,。平方關系:,,。三、和角公式和差角公式四、二倍角公式… ,,。五、萬能公式(
2025-07-24 07:31
【總結】三角公式匯總一、任意角的三角函數在角的終邊上任取一點,記:,正弦:余弦:正切:余切:正割: 余割:注:我們還可以用單位圓中的有向線段表示任意角的三角函數:如圖,與單位圓有關的有向線段、、分別叫做角的正弦線、余弦線、正切線。二、同角三角函數的基本關系式倒數關系:,,。商數關系:,。平方關系:,,。三、誘導公式⑴、、、、的三角函數值,等于的
2025-07-24 20:10
【總結】初等函數的圖形冪函數的圖形指數函數的圖形對數函數的圖形三角函數的圖形各三角函數值在各象限的符號sinα·cscαcosα·secαtanα·cotα三角函數的性質函數y=sinxy=cosxy=tanx
【總結】高中三角函數公式大全sin30°=1/2sin45°=√2/2 sin60°=√3/2cos30°=√3/2 cos45°=√2/2cos60°=1/2tan30°=√3/3tan45°=1
2025-06-16 20:59
【總結】三角函數公式正弦(sin):角α的對邊比上斜邊余弦(cos):角α的鄰邊比上斜邊正切(tan):角α的對邊比上鄰邊余切(cot):角α的鄰邊比上對邊正割(sec):角α的斜邊比上鄰邊余割(csc):角α的斜邊比上對邊sin30°=1/2sin45°=根號2/2sin60°=根號3/2cos30°=
2025-04-04 03:45
【總結】(第一課時)終邊相同的角同一三角函數值相等.)(tan)2tan(cos)2cos(sin)2sin(zkkkk???????????????????誘導公式一:利用誘導公式一,我們可以把任意角三角函數的求值問題轉化為00~3600的求值問題.
2024-11-17 17:35
【總結】高考三角函數:sin=0cos=1tan=0sin3=cos3=tan3=sin=cos=tan=1sin6=cos6=tan6=sin9=1cos9=0tan9無意義2.角度制與弧度制的互化:3691827360弧長公
2025-08-08 19:24