【總結(jié)】平面向量定義及線性運算練習(xí)題一.選擇題1、下列說法正確的是(?。〢、數(shù)量可以比較大小,向量也可以比較大小.B、方向不同的向量不能比較大小,但同向的可以比較大小.C、、向量的??梢员容^大小.2、給出下列六個命題:①兩個向量相等,則它們的起點相同,終點相同;②若,則;③若,則四邊形ABCD是平行四邊形;④平行四邊形ABCD中,一定有;⑤若,,則;⑥,,則.
2025-03-25 01:22
【總結(jié)】平面向量與三角函數(shù)1、選擇題:1.已知平行四邊形ABCD,O是平行四邊形ABCD所在平面內(nèi)任意一點,,,,則向量等于()A.++B.+-C.-+D.--2.已知向量與的夾角為,則等于() (A)5 ?。˙)4
2025-03-25 01:23
【總結(jié)】平面向量一、選擇題1、已知向量( )A. B. C. D.2、已知向量則的坐標(biāo)是( )A. B. C. D.3、已知且∥,則x等于( )A.3 B. C. D.4、若則與的夾角的余弦值為( )A. B. C. D.5、若,與的夾角是,則等于( )A.12 B. C. D.
2025-06-19 22:03
【總結(jié)】......平面向量基本定理及坐標(biāo)表示1.平面向量基本定理如果e1、e2是同一平面內(nèi)的兩個不共線向量,那么對于這一平面內(nèi)的任一向量a,存在唯一一對實數(shù)λ1、λ2,使a=λ1e1+λ2e2,其中,不共線的向量e1、e2叫做表示這一平面內(nèi)所有
2025-06-30 20:18
【總結(jié)】平面向量基本定理一、問題情境(1)如何求此時豎直和水平方向速度?(2)利用什么法則?BAMN探究:給定平面內(nèi)兩個向量、,平面內(nèi)任一向量是否都可以在這兩向量方向上分解呢?分解平移共同起點OAB?鏈接幾何畫板平面向量基本定理
2024-11-12 17:12
【總結(jié)】當(dāng)時,0??與同向,ba且是的倍;||b||a?當(dāng)時,0??與反向,ba且是的倍;||b||a||?當(dāng)時,0??0b?,且。||0
2024-11-09 03:31
【總結(jié)】(2)共線向量的一個充要條件:aa????0時,與同向;?a?a=0時,?00??a(1)實數(shù)與向量的積:a?定理:向量與非零向量共線的充要條
2025-07-25 17:39
【總結(jié)】學(xué)大教育個性化教學(xué)教案BeijingXueDaCenturyEducationTechnologyLtd.個性化教學(xué)輔導(dǎo)教案學(xué)科:數(shù)學(xué)任課教師:劉興峰授課日期:年月日(星期)姓名任泳琪年級高一性別女授課時間段總課時第課
2025-08-04 16:20
【總結(jié)】沈陽市第三十五中學(xué)生本課堂導(dǎo)學(xué)案課題:平面向量基本定理科目:數(shù)學(xué)設(shè)計人:秦穎備課組長:陳艷萍年級主任:張寶東沈陽市第三十五中學(xué)生本課堂導(dǎo)學(xué)案學(xué)習(xí)目標(biāo):(1)理解平面里的任何一個向量都可以用兩個不共線的向量來表示,能夠在具體問題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來表達(dá)。(2)培養(yǎng)獨立思考及勇于探求的精神;
2025-08-17 14:03
【總結(jié)】應(yīng)用平面向量基本定理解題舉例秭歸一中數(shù)學(xué)組周宗圣向量融數(shù)、形于一體,具有幾何與代數(shù)形式的雙重身份,因此向量的引入與應(yīng)用極大地拓寬了解題的思想與方法。其解題方法歸納如下::將題目已知條件轉(zhuǎn)化成形式,其中、不共線,則.例1:設(shè)、、為非零向量,其中任意兩個向量不共線,已知+與共線,且+與共線,試問與+是否共線?并證明你的結(jié)論.證明:∵與共線,∴存在唯一實數(shù),使得=
2025-03-26 04:29
【總結(jié)】必修四平面向量基礎(chǔ)練習(xí)題1.下列向量中,與向量不共線的一個向量()A.B.C.D.2.已知正六邊形,在下列表達(dá)式①;②;③;④中,與等價的有()A.個B.個C.個D.個3.如圖,的邊長為,分別是中點,記,,則()A.B.C.D.,但的值不確定4.若向量=(
2025-03-25 02:04
【總結(jié)】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》必修4《平面向量基本定理》教學(xué)目的?(1)了解平面向量基本定理;理解平面向量的坐標(biāo)的概念;?(2)初步掌握應(yīng)用向量解決實際問題的重要思想方法;?(3)能夠在具體問題中適當(dāng)?shù)剡x取基底,使其他向量都能夠用基底來表達(dá).?教學(xué)重點:平面向量基本定理.
2024-11-12 18:20
【總結(jié)】平面向量練習(xí)題1、選擇題:1.已知平行四邊形ABCD,O是平行四邊形ABCD所在平面內(nèi)任意一點,,,,則向量等于()A.++B.+-C.-+D.--2.已知向量與的夾角為,則等于() (A)5 ?。˙)4
【總結(jié)】平面向量的基本定理及坐標(biāo)表示平面向量基本定理平面向量的正交分解及坐標(biāo)表示問題提出t57301p2???????1.向量加法與減法有哪幾種幾何運算法則?λa?(1)|λa|=|λ||a|;(2)λ0時,λa與a方向相同;λ0時,λa與a方向相反;λ=0時
2024-11-09 06:28
【總結(jié)】基礎(chǔ)自主回扣命題熱點突破知能綜合檢測目錄下一頁上一頁末頁首頁章首課前練習(xí):已知正△ABC的邊長為2,圓O的半徑為1,PQ為圓O的任意一條直徑。(1)判斷的值是否會
2025-07-23 07:12