【總結(jié)】331§9.4二階常系數(shù)線性微分方程二階常系數(shù)線性微分方程的一般形式為)(xfqyypy??????其中qp和是實(shí)常數(shù),)(xf是已知函數(shù)。當(dāng)0)(?xf時(shí),形式為0??????qyypy稱為二階常系數(shù)線性齊次微分方程。例如034??????yy如果
2025-01-20 04:56
【總結(jié)】江蘇師范大學(xué)數(shù)學(xué)教育專業(yè)《常微分方程》練習(xí)測(cè)試題庫參考答案一、判斷說明題1、在線性齊次方程通解公式中C是任意常數(shù)而在常數(shù)變易法中C(x)是x的可微函數(shù)。將任意常數(shù)C變成可微函數(shù)C(x),期望它解決線性非齊次方程求解問題,這一方法成功了,稱為常數(shù)變易法。2、因p(x)連續(xù),y(x)=yexp(-)在p(x)連續(xù)的區(qū)間有意義,而exp(-)>0。如果y=0,推出y(x)=0,如果y
2025-06-24 15:00
【總結(jié)】《常微分方程》教學(xué)大綱一、?計(jì)劃學(xué)時(shí):72課時(shí)二、?適用專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)(師范類)(本、??疲⑿畔⑴c計(jì)算科學(xué)(本)三、???課程性質(zhì)與任務(wù):常微分方程是高等師范院校數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)及信息與計(jì)算專業(yè)的基礎(chǔ)課之一。本課程主要學(xué)習(xí)各種基本類型的常微分方程解的性質(zhì)、方程的解法及其某些應(yīng)用。通過該課程的學(xué)習(xí),使學(xué)生正確理解常微分
2025-04-16 23:04
【總結(jié)】數(shù)學(xué)與計(jì)算科學(xué)學(xué)院實(shí)驗(yàn)報(bào)告實(shí)驗(yàn)項(xiàng)目名稱Eular方法求解一階常微分方程數(shù)值解所屬課程名稱偏微分方程數(shù)值解實(shí)驗(yàn)類型驗(yàn)證性實(shí)驗(yàn)日期20
2025-07-24 00:27
【總結(jié)】習(xí)題4—11.求解下列微分方程1)解利用微分法得當(dāng)時(shí),得從而可得原方程的以P為參數(shù)的參數(shù)形式通解或消參數(shù)P,得通解當(dāng)時(shí),則消去P,得特解2);解利用微分法得 當(dāng)時(shí),得從而可得原方程以p為參數(shù)的參數(shù)形式通解:或消p得通解當(dāng)時(shí),消去p得特解3)解利用微分法,得兩
2025-06-18 08:29
【總結(jié)】《常微分方程》自學(xué)指導(dǎo)書一、課程編碼、適用專業(yè)及教材課程編碼:110621211總學(xué)時(shí):90學(xué)時(shí),其中面授學(xué)時(shí):28學(xué)時(shí),自學(xué)學(xué)時(shí):62學(xué)時(shí)。適用專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)(函授本科)使用教材:王高雄等編,常微分方程,高等教育出版社(第二版),1983.9。二、課程性質(zhì)常微分方程科程是高等院校數(shù)學(xué)專業(yè)在數(shù)學(xué)分析和高等代數(shù)基礎(chǔ)上繼續(xù)深入和發(fā)展的一門
2024-10-04 15:52
【總結(jié)】常微分方程課程教學(xué)大綱(OrdinaryDifferentialEquation)課程性質(zhì):學(xué)科基礎(chǔ)課適用專業(yè):信息與計(jì)算科學(xué)先修課程:數(shù)學(xué)分析、高等代數(shù)、普通物理后續(xù)課程:微分方程數(shù)值解總學(xué)分:3教學(xué)目的與要求:微分方程是數(shù)學(xué)理論聯(lián)系實(shí)際的重要渠道之一,也是其它數(shù)學(xué)分支的一個(gè)綜合應(yīng)用場(chǎng)所,我們所研究的方程多數(shù)是由其它學(xué)科(如物理、氣象、生態(tài)學(xué)、經(jīng)濟(jì)學(xué))推
2025-08-22 20:44
【總結(jié)】一、填空題(每空2分,共16分)。1、方程滿足解的存在唯一性定理?xiàng)l件的區(qū)域是 xoy平面 ?。?.方程組的任何一個(gè)解的圖象是n+1維空間中的一條積分曲線.3.連續(xù)是保證方程初值唯一的充分條件.4.方程組的奇點(diǎn)的類型是中心5.方程的通解是6.變量可分離方程的積分因子是7.二階線性齊次微分方程的兩個(gè)解
【總結(jié)】常微分方程(第三版)王高雄著課后習(xí)題答案1.=2xy,并滿足初始條件:x=0,y=1的特解。解:=2xdx兩邊積分有:ln|y|=x+cy=e+e=cex另外y=0也是原方程的解,c=0時(shí),y=0原方程的通解為y=cex,x=0y=1時(shí)c=1特解為y=e.2.ydx+(x+1)dy=0并求滿足初始條件:x=0,y=1的特解。解:ydx=-(
2025-01-18 00:00
【總結(jié)】第一節(jié)微分方程的概念第二節(jié)常見的一階微分方程第三節(jié)高階微分方程第四節(jié)歐拉方程第五節(jié)微分方程的應(yīng)用第六節(jié)差分方程簡(jiǎn)介微分方程簡(jiǎn)介?方程:線性方程、二次方程、高次方程、指數(shù)方程、對(duì)數(shù)方程、三角方程和方程組等。?用微積分描述運(yùn)動(dòng),便得到微分方程。例如描述物質(zhì)在一定條件下的運(yùn)動(dòng)變化規(guī)律;
2025-01-19 12:01
【總結(jié)】第三章存在和唯一性定理一.[內(nèi)容提要]本章主要介紹解的存在和唯一性定理、,學(xué)過這一定理之后,對(duì)于微分方程的通解概念,才由形式上的理解轉(zhuǎn)為實(shí)質(zhì)上的理解;另外在求近似解之前,都必須從理論上做解的存在唯一性判定.關(guān)于解的延伸定理,它把解的存在唯一性定理所得到的、具有局部性的結(jié)果,,都是很有意義的.二.[關(guān)鍵詞]存在和唯一性,解的延伸,畢卡逐次逼近法三.[目的和要求]
2025-06-29 11:50
【總結(jié)】9《常微分方程》選擇題及答案選擇題1、下列方程中為常微分方程的是()(A)(B)(C)(D)(c為常數(shù))2、下列微分方程是線性
2025-03-25 01:12
【總結(jié)】目錄上頁下頁返回結(jié)束一、一階微分方程求解1.一階標(biāo)準(zhǔn)類型方程求解關(guān)鍵:辨別方程類型,掌握求解步驟2.一階非標(biāo)準(zhǔn)類型方程求解(1)變量代換法——代換自變量代換因變量代換某組合式(2)積分因子法——選積分因子,解全微分方程四個(gè)標(biāo)準(zhǔn)類型
2024-10-19 17:11
【總結(jié)】常微分方程期終考試試卷(1)一、填空題(30%)1、方程有只含的積分因子的充要條件是()。有只含的積分因子的充要條件是______________。2、_____________稱為黎卡提方程,它有積分因子______________。3、__________________稱為伯努利方程,它有積分因子_________。4、若為階齊線性方程的個(gè)解,則它
【總結(jié)】用分離變量法解常微分方程.1直接可分離變量的微分方程=()的方程,稱為變量分離方程,這里,分別是的連續(xù)函數(shù).如果(y)≠0,我們可將()改寫成=,這樣,變量就“分離”,得到 通解:=+c. ()其中,c表示該常數(shù),,分別理解為,()()的解.例1求解方程的通解.解:(1)變形且分離變量:(2)兩邊積分:,得.
2025-07-25 08:19