【總結(jié)】初中幾何最值問題例題精講一、三點(diǎn)共線1、構(gòu)造三角形【例1】在銳角中,AB=4,BC=5,∠ACB=45°,將△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn),得到△A1BC1.點(diǎn)E為線段AB中點(diǎn),點(diǎn)P是線段AC上的動(dòng)點(diǎn),在△ABC繞點(diǎn)B按逆時(shí)針方向旋轉(zhuǎn)過程中,點(diǎn)P的對應(yīng)點(diǎn)是點(diǎn)P1,求線段EP1長度的最大值與最小值.【鞏固】以平面上一點(diǎn)O為直角頂點(diǎn),
2025-03-24 12:33
【總結(jié)】導(dǎo)數(shù)壓軸題分類(2)---極值點(diǎn)偏移問題極值點(diǎn)偏移問題常見的處理方法有⑴構(gòu)造一元差函數(shù)或者。其中為函數(shù)的極值點(diǎn)。⑵利用對數(shù)平均不等式。。⑶變換主元等方法。任務(wù)一、完成下面問題,總結(jié)極值點(diǎn)偏移問題的解決方法。1.設(shè)函數(shù)(1)試討論函數(shù)的單調(diào)性;(2)有兩解(),求證:.解析:(1)由可知因?yàn)楹瘮?shù)的定義域?yàn)?,所以①若時(shí),當(dāng)時(shí),,函數(shù)單調(diào)遞減,當(dāng)時(shí),,函數(shù)單調(diào)
2025-07-26 05:40
【總結(jié)】利用導(dǎo)數(shù)求函數(shù)的極值例求下列函數(shù)的極值:1.;2.;3.分析:按照求極值的基本方法,首先從方程求出在函數(shù)定義域內(nèi)所有可能的極值點(diǎn),然后按照函數(shù)極值的定義判斷在這些點(diǎn)處是否取得極值.解:1.函數(shù)定義域?yàn)镽.令,得.當(dāng)或時(shí),,∴函數(shù)在和上是增函數(shù);當(dāng)時(shí),,∴函數(shù)在(-2,2)上是減函數(shù).∴當(dāng)時(shí),函數(shù)有極大值,當(dāng)時(shí),函數(shù)有極小值2.函數(shù)定義域?yàn)?/span>
2025-05-16 02:04
【總結(jié)】奧數(shù)幾何的五大模型問題例題1:圖17是一個(gè)正方形地板磚示意圖,在大正方形ABCD中AA1=AA2=BB1=BB2=CC1=CC2=DD1=DD2,中間小正方形EFGH的面積是16平方厘米,四塊藍(lán)色的三角形的面積總和是72平方厘米,那么大正方形ABCD的面積是多少平方厘米? 分析與解連AC和BD兩條大正方形的對角線,它們相交于O,然后將三角形AOB放在DPC處(如圖18和圖1
2025-03-25 00:27
【總結(jié)】1用空間向量處理立體幾何的問題立體幾何著重的是研究點(diǎn)、線、面之間的關(guān)系,研究空間三種位置關(guān)系(即空間直線與直線、直線與平面、平面與平面)以及三種角(異面直線所成的角、直線與平面所成的角和二面角)的計(jì)算。自上海高考試卷內(nèi)容改革以來,純粹用立體幾何的公理、定理來證明或計(jì)算立體幾何問題越來越少,而借助于向量的計(jì)算方法來處理立體幾何的問題卻越來越多。本講座就是詳細(xì)
2025-08-27 17:12
【總結(jié)】解析幾何中的幾類定值問題浙江省諸暨中學(xué)邵躍才311800求定值是解析幾何中頗有難度的一類問題,由于它在解題之前不知道定值的結(jié)果,因而更增添了題目的神秘色彩。解決這類問題時(shí),要善于運(yùn)用辯證的觀點(diǎn)去思考分析,在動(dòng)點(diǎn)的“變”中尋求定值的“不變”性,用特殊探索法(特殊值、特殊位置、特殊圖形等)先確定出定值,揭開神秘的面紗,這樣可將盲目的探索問題轉(zhuǎn)化為有方向有目標(biāo)的一般性證明題,從而找到解
2025-09-25 17:25
【總結(jié)】1幾何中的最值問題(作業(yè))1.如圖,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,對角線AC平分∠BAD,點(diǎn)E在AB上,且AE=2(AE<AD),點(diǎn)P是AC上的動(dòng)點(diǎn),則PE+PB的最小值是__________.PEDCBACDQPBA
2025-08-01 20:49
【總結(jié)】......第十一講二元函數(shù)的極值要求:理解多元函數(shù)極值的概念,會(huì)用充分條件判定二元函數(shù)的極值,會(huì)用拉格朗日乘數(shù)法求條件極值。問題提出:在實(shí)際問題中,往往會(huì)遇到多元函數(shù)的最大值,最小值問題,與一元函數(shù)相類似,多元函
2025-05-16 03:54
【總結(jié)】立體幾何體積問題1、在如圖所示的五面體中,四邊形為菱形,且,平面,,為中點(diǎn).(1)求證平面;(2)若平面平面,求到平面的距離.【答案】(1)見解析;(2)試題解析(2)由(1)得平面,所以到平面的距離等于到平面的距離.取的中點(diǎn),連接,因?yàn)樗倪呅螢榱庑?,且,,所以,,因?yàn)槠矫嫫矫?,平面平面,所以平面,,因?yàn)?,所以,學(xué)
2025-03-25 06:43
【總結(jié)】一、函數(shù)極值的定義oxyab)(xfy?1x2x3x4x5x6xoxyoxy0x0x.)()(,)()(,,,;)()(,)()(,,,,),(,),()(000000000的一個(gè)極小值是函數(shù)就稱均成立外除了點(diǎn)任何點(diǎn)對于這鄰域內(nèi)的的一個(gè)鄰域如果存在著點(diǎn)
2025-07-26 20:14
【總結(jié)】智浪教育--普惠英才文庫微小專題5 帶電粒子在磁場中運(yùn)動(dòng)的臨界極值與多解問題1.如圖所示,在邊長為L的等邊三角形ACD區(qū)域內(nèi),、電荷量為q的帶正電粒子以相同速度(速度大小未確定)沿垂直于CD的方向射入磁場,經(jīng)磁場偏轉(zhuǎn)后三條邊均有粒子射出,:(1)磁場的磁感應(yīng)強(qiáng)度大小.(2)要確保粒子能從CD邊射出,射入的最大速度.(3)AC、AD邊上可能有粒子射出的范圍.
2025-06-07 18:24
【總結(jié)】??繪圖說到繪圖,只要計(jì)算函數(shù)在某一區(qū)間的值,并且畫出結(jié)果向量,這樣就得到了函數(shù)的圖形。在大多數(shù)情況下,這就足夠了。然而,有時(shí)一個(gè)函數(shù)在某一區(qū)間是平坦的并且無激勵(lì),而在其它區(qū)間卻失控。在這種情況下,運(yùn)用傳統(tǒng)的繪圖方法會(huì)導(dǎo)致圖形與函數(shù)真正的特性相去甚遠(yuǎn)。MATLAB提供了一個(gè)稱為fplot的巧妙的繪圖函數(shù)。該函數(shù)細(xì)致地計(jì)算要繪圖的函數(shù),并且確保在輸出的圖形中表示出所有的
2025-08-04 16:28
【總結(jié)】?.?條件.?.重點(diǎn)難點(diǎn)重點(diǎn):利用導(dǎo)數(shù)知識(shí)求函數(shù)的極值難點(diǎn):對極大、極小值概念的理解及求可導(dǎo)函數(shù)的極值的步驟觀察圖象中,點(diǎn)a和點(diǎn)b處的函數(shù)值與它們附近點(diǎn)的函數(shù)值有什么的大小關(guān)系?aboxy??xfy?一極值的定義?點(diǎn)a叫做函數(shù)y=f(x)的極小值點(diǎn),
2025-07-26 19:48
【總結(jié)】所謂“動(dòng)點(diǎn)型問題”是指題設(shè)圖形中存在一個(gè)或多個(gè)動(dòng)點(diǎn),它們在線段、射線或弧線上運(yùn)動(dòng)的一類開放性題目.解決這類問題的關(guān)鍵是動(dòng)中求靜,靈活運(yùn)用有關(guān)數(shù)學(xué)知識(shí)解決問題.1.如圖,已知AB是兩同心圓的大圓的直徑,P為小圓上的一動(dòng)點(diǎn),若兩圓的半徑分別為5和2,且PA2+PB2的值為定值,則這個(gè)定值為_
2025-08-05 02:12
2024-11-06 17:02