【總結】勾股定理的逆定理一、說教材(一)教材分析本節(jié)內容選自《人教版》義務教育課程標準實驗教科書數學八年級下冊第十八章《勾股定理》中的第二節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學習的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學習中的重要內容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應用,同時在應用中滲透了利用代數計算
2025-05-12 05:16
【總結】勾股定理的逆定理說課稿 勾股定理的逆定理說課稿1各位考官,大家好,我是X號考生,今天我說課的內容是《勾股定理的逆定理》。根據新課程標準,我將以教什么,怎么教,為什么這么教為思路開展我的說課,首先...
2024-12-06 22:46
【總結】勾股定理及其逆定理一、知識點1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2)2、勾股定理的逆定理:如果三角形的三邊長:a、b、c有關系a2+b2=c2,那么這個三角形是直角三角形。3、滿足的三個正整數,稱為勾股數。二、典型題型1、求線段的長度題型2、判斷直角三角形題型3、求最短距離三、主要數學思想和方法(1
2025-06-22 04:05
【總結】一勾股定理驗證(等面積法)解題思路:將所給三角形拼成大圖形用等面積法:大圖形面積=各小圖形面積和。例1、如圖所示,可以利用兩個全等的直角三角形拼出一個梯形.借助這個圖形,你能用面積法來驗證勾股定理嗎?例2、如圖矩形是由四個直角三角形拼成,題中已給出各邊長,試證明勾股定理。例3、圖中的正方形均是由Rt△ABC拼成,試驗證勾股定理。2、
2025-06-22 03:47
【總結】勾股定理的證明【證法1】(課本的證明)做8個全等的直角三角形,設它們的兩條直角邊長分別為a、b,斜邊長為c,再做三個邊長分別為a、b、c的正方形,把它們像上圖那樣拼成兩個正方形.從圖上可以看到,這兩個正方形的邊長都是a+b,所以面積相等.即abcabba
2025-08-20 12:09
【總結】27幾何最值與勾股定理(1)常見經典幾何最值模型1、如圖,點A和點B是直線L上的兩定點,,且,,點P為直線L上的動點(1)求的最小值(2)求的最大值2、已知在平面直角坐標系中,,若為軸上兩動點(點在點右側),且,求四邊形周長的最小值.
2025-06-19 07:40
【總結】領先教育2016年勾股定理檢測題一、選擇題(每小題3分,共30分),那么不能組成直角三角形的一組數是(),3,4 B.,,,8,10 D.,,,那么斜邊長擴大到原來的() (),則,兩邊長的平方
2025-03-24 13:01
【總結】信息技術與學科深度融合《勾股定理》教學設計設計者教學內容《勾股定理》學時一課時學科(版本)初中數學·蘇科版(八年級上冊)章節(jié)第78-79頁教學目標1、經歷探索勾股定理的過程,發(fā)展合情推理的能力,體會數形結合的思想2、能應用勾股定理求直角三角形中未知邊的長3、發(fā)展有條理的思考與表達能力,感受勾股定理的文化價值學情分析
2025-04-16 22:27
【總結】《勾股定理》教學反思 《勾股定理》教學反思1通過本節(jié)課的教學,我采用了合作探究、操作體驗的教學方式。在課堂教學中,首先創(chuàng)設情境,提出問題;再讓學生通過做一做、測量、判斷、找規(guī)律,猜想出一般性...
2024-12-06 00:47
【總結】折疊問題與勾股定理例題總結1.如圖,在矩形ABCD中,AB=6,BC=8。將矩形ABCD沿CE折疊后,使點D恰好落在對角線AC上的點F處。(1)求EF的長;(2)求梯形ABCE的面積。2.如圖所示,在?ABC中,AB=20,AC=12,BC=16,把?ABC折疊,使AB落在直線AC上,求重疊部分(陰影部分)的面積.3
2025-03-25 02:27
【總結】與直角有關的折疊問題(一),將矩形ABCD的四個角向內折起,恰好拼成一個無縫隙無重疊的四邊形EFGH,若EH=9厘米,EF=12厘米,則邊AD的長是(????)A.12厘米B.15厘米C.20厘米D.21厘米2.?如圖,在矩形ABCD中,AB=4,BC=8,將矩形ABCD沿EF折
2025-03-24 12:58
【總結】17.2勾股定理的逆定理(二)人教版八年級唐山市第六十中學一、教學目標1.靈活應用勾股定理及逆定理解決實際問題。2.進一步加深性質定理與判定定理之間關系的認識3.應用勾股定理的逆定理判斷一個三角形是否是直角三角形。4.靈活應用勾股定理及逆定理解綜合題。二、重點、難點重點:1.靈活應用勾股定理及逆定理解決實際問題。2.利用勾股定理及逆定理解綜合題
2025-08-04 09:11
【總結】勾股定理的逆定理第十七章勾股定理第1課時一、情境引入?據說,幾千年前的古埃及人就已經知道,在一根繩子上連續(xù)打上等距離的13個結,然后,用釘子將第1個與第13個結釘在一起,拉緊繩子,再在第4個和第8個結處各釘上一個釘子,如圖。這樣圍成的三角形中,最長邊所對的角就是直角。知道為什么嗎?也就意味著,如果圍成三
2024-12-07 17:29
【總結】勾股定理的逆定理人教版數學八年級下冊.重點、互逆定理難點3.能靈活運用勾股定理的逆定理解決實際問題.重點學習目標(1)在Rt△ABC,∠C=90°,a=8,b=15,則c=.(2)在Rt△ABC,∠B=90
2025-07-18 12:59
【總結】第一篇:勾股定理逆定理說課稿 勾股定理的逆定理說課稿 一、教材分析 (一)、本節(jié)課在教材中的地位作用 “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學習的一個直角三角形的判斷定理,它...
2025-10-26 17:50