freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中二次函數(shù)知識(shí)點(diǎn)總結(jié)與練習(xí)題-wenkub

2023-04-07 05:31:59 本頁(yè)面
 

【正文】 當(dāng)時(shí),隨的增大而減?。划?dāng)時(shí),有最大值.七、二次函數(shù)解析式的表示方法1. 一般式:(,為常數(shù),);2. 頂點(diǎn)式:(,為常數(shù),);3. 兩根式:(,是拋物線與軸兩交點(diǎn)的橫坐標(biāo)).注意:任何二次函數(shù)的解析式都可以化成一般式或頂點(diǎn)式,但并非所有的二次函數(shù)都可以寫(xiě)成交點(diǎn)式,只有拋物線與軸有交點(diǎn),即時(shí),拋物線的解析式才可以用交點(diǎn)式表示.二次函數(shù)解析式的這三種形式可以互化.八、二次函數(shù)的圖象與各項(xiàng)系數(shù)之間的關(guān)系 1. 二次項(xiàng)系數(shù)二次函數(shù)中,作為二次項(xiàng)系數(shù),顯然. ⑴ 當(dāng)時(shí),拋物線開(kāi)口向上,的值越大,開(kāi)口越小,反之的值越小,開(kāi)口越大; ⑵ 當(dāng)時(shí),拋物線開(kāi)口向下,的值越小,開(kāi)口越小,反之的值越大,開(kāi)口越大.總結(jié)起來(lái),決定了拋物線開(kāi)口的大小和方向,的正負(fù)決定開(kāi)口方向,的大小決定開(kāi)口的大?。?. 一次項(xiàng)系數(shù) 在二次項(xiàng)系數(shù)確定的前提下,決定了拋物線的對(duì)稱軸. ⑴ 在的前提下,當(dāng)時(shí),即拋物線的對(duì)稱軸在軸左側(cè);當(dāng)時(shí),即拋物線的對(duì)稱軸就是軸;當(dāng)時(shí),即拋物線對(duì)稱軸在軸的右側(cè).⑵ 在的前提下,結(jié)論剛好與上述相反,即當(dāng)時(shí),即拋物線的對(duì)稱軸在軸右側(cè);當(dāng)時(shí),即拋物線的對(duì)稱軸就是軸;當(dāng)時(shí),即拋物線對(duì)稱軸在軸的左側(cè).總結(jié)起來(lái),在確定的前提下,決定了拋物線對(duì)稱軸的位置.的符號(hào)的判定:對(duì)稱軸在軸左邊則,在軸的右側(cè)則,概括的說(shuō)就是“左同右異”總結(jié): 3. 常數(shù)項(xiàng) ⑴ 當(dāng)時(shí),拋物線與軸的交點(diǎn)在軸上方,即拋物線與軸交點(diǎn)的縱坐標(biāo)為正; ⑵ 當(dāng)時(shí),拋物線與軸的交點(diǎn)為坐標(biāo)原點(diǎn),即拋物線與軸交點(diǎn)的縱坐標(biāo)為; ⑶ 當(dāng)時(shí),拋物線與軸的交點(diǎn)在軸下方,即拋物線與軸交點(diǎn)的縱坐標(biāo)為負(fù). 總結(jié)起來(lái),決定了拋物線與軸交點(diǎn)的位置. 總之,只要都確定,那么這條拋物線就是唯一確定的.二次函數(shù)解析式的確定:根據(jù)已知條件確定二次函數(shù)解析式,通常利用待定系數(shù)法.用待定系數(shù)法求二次函數(shù)的解析式必須根據(jù)題目的特點(diǎn),選擇適當(dāng)?shù)男问?,才能使解題簡(jiǎn)便.一般來(lái)說(shuō),有如下幾種情況:1. 已知拋物線上三點(diǎn)的坐標(biāo),一般選用一般式;2. 已知拋物線頂點(diǎn)或?qū)ΨQ軸或最大(小)值,一般選用頂點(diǎn)式;3. 已知拋物線與軸的兩個(gè)交點(diǎn)的橫坐標(biāo),一般選用兩根式;4. 已知拋物線上縱坐標(biāo)相同的兩點(diǎn),常選用頂點(diǎn)式.九、二次函數(shù)圖象的對(duì)稱 二次函數(shù)圖象的對(duì)稱一般有五種情況,可以用一般式或頂點(diǎn)式表達(dá) 1. 關(guān)于軸對(duì)稱 關(guān)于軸對(duì)稱后,得到的解析式是; 關(guān)于軸對(duì)稱后,得到的解析式是; 2. 關(guān)于軸對(duì)稱 關(guān)于軸對(duì)稱后,得到的解析式是; 關(guān)于軸對(duì)稱后,得到的解析式是; 3. 關(guān)于原點(diǎn)對(duì)稱 關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是; 關(guān)于原點(diǎn)對(duì)稱后,得到的解析式是; 4. 關(guān)于頂點(diǎn)對(duì)稱(即:拋物線繞頂點(diǎn)旋轉(zhuǎn)180176。x2=30,又∵x1x2, ∴x2O,x1O,∵30A=OB,∴x2=3x1. ∴x1(1)根據(jù)已知和結(jié)論中現(xiàn)有的信息,你能否求出題中的二次函數(shù)解析式?若能,請(qǐng)寫(xiě)出求解過(guò)程,并畫(huà)出二次函數(shù)圖象;若不能,請(qǐng)說(shuō)明理由。而從不同的角度考慮可以添加出不同的條件,可以考慮再給圖象上的一個(gè)任意點(diǎn)的坐標(biāo),可以給出頂點(diǎn)的坐標(biāo)或與坐標(biāo)軸的一個(gè)交點(diǎn)的坐標(biāo)等。用二次函數(shù)解決最值問(wèn)題例1已知邊長(zhǎng)為4的正方形截去一個(gè)角后成為五邊形ABCDE(如圖),其中AF=2,BF=1.試在AB上求一點(diǎn)P,使矩形PNDM有最大面積.【評(píng)析】本題是一道代數(shù)幾何綜合題,把相似三角形與二次函數(shù)的知識(shí)有機(jī)的結(jié)合在一起,能很好考查學(xué)生的綜合應(yīng)用能力.同時(shí),也給學(xué)生探索解題思路留下了思維空間.例2 某產(chǎn)品每件成本10元,試銷(xiāo)階段每件產(chǎn)品的銷(xiāo)售價(jià)x(元)與產(chǎn)品的日銷(xiāo)售量y(件)之間的關(guān)系如下表:x(元)152030…y(件)252010… 若日銷(xiāo)售量y是銷(xiāo)售價(jià)x的一次函數(shù). (1)求出日銷(xiāo)售量y(件)與銷(xiāo)售價(jià)x(元)的函數(shù)關(guān)系式; (2)要使每日的銷(xiāo)售利潤(rùn)最大,每件產(chǎn)品的銷(xiāo)售價(jià)應(yīng)定為多少元?此時(shí)每日銷(xiāo)售利潤(rùn)是多少元? 【解析】(1)設(shè)此一次函數(shù)表達(dá)式為y=kx+b.則 解得k=1,b=40,即一次函數(shù)表達(dá)式為y=x+40. (2)設(shè)每件產(chǎn)品的銷(xiāo)售價(jià)應(yīng)定為x元,所獲銷(xiāo)售利潤(rùn)為w元 w=(x10)(40x)=x2+50x400=(x25)2+225. 產(chǎn)品的銷(xiāo)售價(jià)應(yīng)定為25元,此時(shí)每日獲得最大銷(xiāo)售利潤(rùn)為225元. 【點(diǎn)評(píng)】解決最值問(wèn)題應(yīng)用題的思路與一般應(yīng)用題類(lèi)似,也有區(qū)別,主要有兩點(diǎn):(1)設(shè)未知數(shù)在“當(dāng)某某為何值時(shí),什么最大(或最小、最?。钡脑O(shè)問(wèn)中,“某某”要設(shè)為自變量,“什么”要設(shè)為函數(shù);(2)問(wèn)的求解依靠配方法或最值公式,而不是解方程.?平時(shí)我們?cè)谔罄K時(shí),繩甩到最高處的形狀可近似地看為拋物線.如圖所示,正在甩繩的甲、乙兩名學(xué)生拿繩的手間距為4 m,距地面均為1m,學(xué)生丙、丁分別站在距甲拿繩的手水平距離1m、2.5 m處.繩子在甩到最高處時(shí)剛好通過(guò)他們的頭頂.已知學(xué)生丙的身高是1.5 m,則學(xué)生丁的身高為(建立的平面直角坐標(biāo)系如右圖所示)( )A.1.5 m B.1.625 m      C.1.66 m D.1.67 m分析:本題考查二次函數(shù)的應(yīng)用答案:B二.二次函數(shù)部分Oyx第1題圖1.如圖所示是二次函數(shù)圖象的一部分,圖
點(diǎn)擊復(fù)制文檔內(nèi)容
法律信息相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1