【總結(jié)】求數(shù)列通項(xiàng)公式專題練習(xí)1、設(shè)是等差數(shù)列的前項(xiàng)和,已知與的等差中項(xiàng)是1,而是與的等比中項(xiàng),求數(shù)列的通項(xiàng)公式2、已知數(shù)列中,,前項(xiàng)和與的關(guān)系是,試求通項(xiàng)公式。3、已知數(shù)列中,,前項(xiàng)和與通項(xiàng)滿足,求通項(xiàng)的表達(dá)式.4、在數(shù)列{}中,=1,(n+1)·=n·,求的表達(dá)式。
2025-03-25 02:52
【總結(jié)】等差數(shù)列的通項(xiàng)公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,1a第2項(xiàng)用表示,2a…,第n項(xiàng)用表示,na…,數(shù)
2025-08-16 02:28
【總結(jié)】等比數(shù)列的通項(xiàng)公式復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個數(shù)叫做這個數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,1a第2項(xiàng)用表示,2a…,第n項(xiàng)用表示,na…,數(shù)列的一般形式可以寫成:,1
2025-05-12 21:08
【總結(jié)】遞推數(shù)列通項(xiàng)公式之題根研究遞推數(shù)列通項(xiàng)公式之的題根研究055350河北隆堯一中焦景會電話13085848802[題根]數(shù)列滿足,,求通項(xiàng)公式。[分析]此為型遞推數(shù)列,構(gòu)造新數(shù)列,轉(zhuǎn)化成等比數(shù)列求解。[解答]在兩邊加1,得,則數(shù)列是首項(xiàng)為2,公比為2的等比數(shù)列,得,即為所求。[規(guī)律小結(jié)]型遞推數(shù)列,當(dāng)p=1時,數(shù)列為等
2025-06-07 22:59
【總結(jié)】數(shù)列求通項(xiàng)及通項(xiàng)的求法●目標(biāo)地位:數(shù)列的通項(xiàng)是數(shù)列的核心?!穹椒w類:a、運(yùn)用求數(shù)列通項(xiàng)公式例1.已知數(shù)列的前項(xiàng)和為,,,求。b、⑴已知關(guān)系式,可利用迭加法或迭代法;例1.已知數(shù)列中,,求數(shù)列的通項(xiàng)公式;例2.?dāng)?shù)列中,,,求。c、已知關(guān)系式,可利用迭乘法.:,求求數(shù)列的通項(xiàng)公式;
2025-08-17 06:54
【總結(jié)】等比數(shù)列的通項(xiàng)公式(教案)一、教學(xué)目標(biāo)1、掌握等比數(shù)列的通項(xiàng)公式,并能夠用公式解決一些相關(guān)問題。2、掌握由等比數(shù)列的通項(xiàng)公式推導(dǎo)出的相關(guān)結(jié)論。二、教學(xué)重點(diǎn)、難點(diǎn)各種結(jié)論的推導(dǎo)、理解、應(yīng)用。三、教學(xué)過程1、導(dǎo)入復(fù)習(xí)等比數(shù)列的定義:通項(xiàng)公式:用歸納猜測的方法得到,用累積法證明2、新知探索例1在等比數(shù)列中,(1)
2025-04-17 08:21
【總結(jié)】數(shù)列的通項(xiàng)公式(高三復(fù)習(xí)課)—以本為據(jù),發(fā)散思維一、回顧?等差數(shù)列的定義:一個數(shù)列從第二項(xiàng)起,它的每一項(xiàng)與前一項(xiàng)的差為常數(shù),那么這個數(shù)列為等差數(shù)列。其通項(xiàng)為:dnaan)1(1???是如何推導(dǎo)出來的呢??由定義:
2025-11-01 00:27
【總結(jié)】精心整理等差數(shù)列的練習(xí)一、選擇題1.由確定的等差數(shù)列,當(dāng)時,序號等于()A.80B.100C.90D.882.已知等差數(shù)列{},,則此數(shù)列的前11項(xiàng)的和A.44B.33C.22D.113.若正數(shù)a,b,c成公差不為零的等差數(shù)列,則()(A)成等差數(shù)列(B)成等比數(shù)列(C)成等差數(shù)列(D)成等比數(shù)列4.設(shè)為公差不為零的等差數(shù)列的前項(xiàng)和,若,則()A.15
2025-08-05 11:04
【總結(jié)】用不動點(diǎn)法求數(shù)列通項(xiàng)的一點(diǎn)幾何意義猜想孟劍衛(wèi)(江蘇省東海高級中學(xué),江蘇東海)定義;方程f(x)=x的根稱為函數(shù)f(x)的不動點(diǎn)。利用遞推數(shù)列f(x)的不動點(diǎn),可將某些遞推關(guān)系an=£(an-1)所確定的數(shù)列化為等比數(shù)列或較易求通項(xiàng)的數(shù)列,這種方法叫不動點(diǎn)法。對于這個方法有幾個重要定理,若只從代數(shù)角度理解,恐怕對許多中學(xué)生來說是有難度的。下面筆者對這幾個定理予以幾何解釋:定
2025-06-22 19:24
【總結(jié)】等比數(shù)列通項(xiàng)公式問題情景如何寫出它的第10項(xiàng)呢???na??,16,8,4,2,110a問題1:觀察等比數(shù)列:??na1aqnna問題2:設(shè)是一個首項(xiàng)為,公比為的等比數(shù)列,你能寫出它的第項(xiàng)嗎?師生共同探討:11113423
2025-05-03 02:48
【總結(jié)】......用待定系數(shù)法求遞推數(shù)列通項(xiàng)公式初探摘要:本文通過用待定系數(shù)法分析求解9個遞推數(shù)列的例題,得出適用待定系數(shù)法求其通項(xiàng)公式的七種類型的遞
2025-06-25 16:48
【總結(jié)】數(shù)列通項(xiàng)公式解法總結(jié)及習(xí)題訓(xùn)練(附答案):①等差數(shù)列通項(xiàng)公式;②等比數(shù)列通項(xiàng)公式。:已知(即)求,用作差法:nS12()naf???na。?1,()na???:已知求,用作商法:。12()nfA?n(1),2)nfn???????:若求:。1()naf???na1221()()(nnaaa??????(:已知求,用累乘法:。1)f?
2025-06-26 05:20
【總結(jié)】高二數(shù)學(xué)導(dǎo)學(xué)案GRSX5-33常見遞推數(shù)列通項(xiàng)公式的求法高二數(shù)學(xué)備課組編一、學(xué)習(xí)目標(biāo):1.運(yùn)用累加、累乘、待定系數(shù)等方法求數(shù)列的通項(xiàng)公式。2.培養(yǎng)學(xué)生養(yǎng)成細(xì)心觀察、認(rèn)真分析、善于總結(jié)的良好思維習(xí)慣;二、重點(diǎn)
2025-04-17 00:58
【總結(jié)】用心愛心專心遞推數(shù)列通項(xiàng)求解方法舉隅類型一:1nnapaq???(1p?)思路1(遞推法):??123()nnnnapaqppaqqpppaqqq?????????????????……121(1npaqpp??????…211)
2025-08-26 00:31