【總結】3確定二次函數(shù)的表達式第二章二次函數(shù)課堂達標素養(yǎng)提升第二章二次函數(shù)第2課時已知圖象上三點求表達式課堂達標一、選擇題第2課時已知圖象上三點求表達式1.一個二次函數(shù)的圖象經(jīng)過A(0,0),B(-1,-11),C(1,9)三點,則這個二次函數(shù)的表達式是(
2025-06-18 01:23
【總結】“時間是個常數(shù),但對勤奮者來說,是個‘變數(shù)’。用‘分’來計算時間的人比用‘小時’來計算時間的人時間多59倍?!?---雷巴柯夫y是x的一次函數(shù),請你添加條件___________________,則此函數(shù)的表達式為_________.已知一次函數(shù)y=kx+b圖象上兩點的坐標,
2024-11-17 08:35
【總結】課題:確定二次函數(shù)的表達式課型:新授課年級:九年級學習目標:..教學重點與難點:重點:會用待定系數(shù)法確定二次函數(shù)的表達式.難點:會求簡單的實際問題中的二次函數(shù)表達式.教學過程:一、復習回顧?一般式:y=ax2+bx+c頂點式:y=a(x-h)2+k[
2024-12-08 05:07
【總結】北師大版九年級下冊數(shù)學二次函數(shù)解析式有哪幾種表達方式?一般式:y=ax2+bx+c頂點式:y=a(x-h)2+k如何求二次函數(shù)的解析式?已知二次函數(shù)圖象上三個點的坐標,可用待定系數(shù)法求其解析式.交點式:y=a(x-x1)(x-x2)情境導入本節(jié)目標..(西安·中考)如圖,在平面
2025-06-15 05:25
2025-06-15 05:27
【總結】確立二次函數(shù)表達式1已知二次函數(shù)的圖象的頂點坐標為(1,-3),且圖像過點(2,-5),求這個二次函數(shù)的解析式.開口,頂點坐標是,對稱軸是,當x=時,y有最值為。(-2,-3),且圖像過點(-3,-2),求這個二次函數(shù)的解
2024-11-24 22:07
【總結】崔金花確定二次函數(shù)的解析式?我們在確定一次函數(shù)y=kx+b的關系時,通常需要__個獨立的條件;確定反比例函數(shù)?時,通常需要__個條件,如果確定二次函數(shù)?Y=ax2+bx+c的關系式時,又需要___個條件呢?kyx?213二次函數(shù)解析式的幾種表達式?一般式:y=ax2+bx+c22
2024-11-28 01:30
【總結】復習鞏固:1、二次函數(shù)可以用哪幾種方法表示?2、寫出下列函數(shù)的頂點坐標,并說出它的最值情況:(1)y=2x2-3x+5(2)y=-2x2+4x+3何時橙子總產(chǎn)量最大?某果園有100棵橙子樹,每一棵樹平均結600個橙子.現(xiàn)準備多種一些橙子樹以提高產(chǎn)量,但是如果多種樹,那么樹之間的距離和每一棵樹所接受的陽光就會減少
2024-12-07 15:24
【總結】THANKS
2025-03-13 07:51
【總結】3確定二次函數(shù)的表達式..二次函數(shù)解析式有哪幾種表達方式?一般式:y=ax2+bx+c頂點式:y=a(x-h)2+k如何求二次函數(shù)的解析式?已知二次函數(shù)圖象上三個點的坐標,可用待定系數(shù)法求其解析式.交點式:y=a(x-x1)(x-x2)解析:設所求的二次函數(shù)為y=ax2+bx+c,由條件得:
2025-06-15 02:54
2025-06-15 03:00
【總結】編寫時間執(zhí)行時間主備人譚桂紅執(zhí)教者譚桂紅總序第個教案課題不共線三點確定二次函數(shù)的表達式共課時第課時課型新授教學目標.,靈活選擇二次函數(shù)的三種形式,合適地設置函數(shù)解析式,可使計算過程簡便.,激發(fā)學生探究問題,解決
2024-11-19 14:00
【總結】課題:確定二次函數(shù)的表達式課型:新授課年級:九年級教學目標:1.會用待定系數(shù)法確定二次函數(shù)的表達式.2.能根據(jù)二次函數(shù)圖象上點的特點,靈活選擇合適的表達式.教學重、難點:重點:會用待定系數(shù)法確定二次函數(shù)的表達式.難點:能根據(jù)二次函數(shù)圖象上點的特點,靈活選擇合適的表達式.課前準備:多
2024-12-09 12:44
【總結】一.選擇題:1.已知拋物線的頂點為(1,2),且通過(1,10),則這條拋物線的表達式為()A.y=3-2B.y=3+2C.y=3-2D.y=-3-22.已知二次函數(shù)的圖象過點(1,-1),(2,-4),(0,4)三點,那么它的對稱軸是直線()A.B.C.D.3.一個二次函數(shù)
2025-03-25 06:36
【總結】二次函數(shù)的應用(2)教材分析從題目來看,“何時獲得最大利潤”似乎是商家才應該考慮的問題.但是你知道嗎?這正是我們研究的二次函數(shù)的范疇.因為二次函數(shù)化為頂點式后,很容易求出最大或最小值.而何時獲得最大利潤就是當自變量取何值時,函數(shù)值取最大值的問題.因此本節(jié)課中關鍵的問題就是如何使學生把實際問題轉(zhuǎn)化為數(shù)學問題,從而把數(shù)學知識運用于實踐.即是否
2024-11-19 14:40