【總結】第二章第七課時:不等式(組)?要點、考點聚焦?課前熱身?典型例題解析?課時訓練?要點、考點聚焦.,組成這個不等式的解的集合,簡稱這個不等式的解集.:只含有一個未知數,并且未知數的次數是一次的整式不等式叫做一元一次不等式.的不等式組.的解集的公共部分
2025-04-30 18:20
【總結】4、排序不等式(一)概念【9】:設有兩組實數(1)(2)滿足(3)(4)另設(5)是實數組(
2025-06-25 22:56
【總結】第一篇:不等式證明20法 不等式證明方法大全 1、比較法(作差法) 在比較兩個實數a和b的大小時,可借助a-b的符號來判斷。步驟一般為:作差——變形——判斷(正號、負號、零)。變形時常用的方法有...
2024-10-28 23:16
【總結】第一篇:構造函數證明不等式 構造函數證明不等式 構造函數證明:e的(4n-4)/6n+3)次方 不等式兩邊取自然對數(嚴格遞增)有: ln(2^2/2^2-1)+ln(3^2/3^2-1)+...
2024-10-31 14:46
【總結】第一篇:向量法證明不等式 向量法證明不等式 高中新教材引入平面向量和空間向量,將其延伸到歐氏空間上的n維向量,向量的加、減、,則高中階段的向量即為n=2,,b是歐氏空間的兩向量,且a=(x1,x2...
2024-11-05 17:00
【總結】第一篇:均值不等式的證明 均值不等式的證明 設a1,a2,a3...an是n個正實數,求證(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要簡單的詳細過程,謝謝!...
2024-11-05 22:00
【總結】第一篇:不等式證明1 本資料從網上收集整理 難點18不等式的證明策略 不等式的證明,方法靈活多樣,,常滲透不等式證明的內容,純不等式的證明,歷來是高中數學中的一個難點,本難點著重培養(yǎng)考生數學式的...
2024-11-08 22:00
【總結】第一篇:放縮法與不等式的證明 放縮法與不等式的證明 我們知道,“放”和“縮”是證明不等式時最常用的推證技巧,但經教學實踐告訴我們,這種技巧卻是不等式證明部分的一個教學難點。學生在證明不等式時,常因...
2024-10-28 03:46
【總結】不等式的證明——綜合法導入新課1.證明().2.比較與的大小,并證明你的結論.嘗試探索,建立新知,求證例1已知證明:因為,則所以故①利用某些已經證明過的不等式和不等式的性質推導出所要證明的不等式成立,這種證明方法通常叫做綜合法.②綜合法的思路是“由因
2025-07-26 00:13
【總結】第一篇:排序不等式及證明 四、排序不等式 【】 (一)概念9:設有兩組實數 a1,a2,×××,an(1)b1,b2,×××,bn(2)滿足 a1£a2£×××£an(3)b1£b2£×××...
2024-11-06 03:16
【總結】第一篇:單調性證明不等式 單調性證明不等式 x證明e≥x+:記K(x)=e-x-1,則K′(x)=e-1,當x∈(0,1)時,K′(x)>0,因此K(x) 在[0,1]上是增函數,故K(x)≥K...
2024-10-30 23:20
【總結】不等式的證明(放縮法)1.設,,則的大小關系是()A.B.C.D.2.已知三角形的三邊長分別為,設,則與的大小關系是()A.B.C.D.3.設不等的兩個正數滿足,則的取值范
2025-07-24 12:58
【總結】精品資源巧用向量證明不等式對不等式的證明,若認真分析某些不等式的條件和結論,構造適當的向量,利用向量數量積的性質,可使證明過程變得簡捷,下面舉例加以說明。例1.已知。證明:設由(為的夾角)得,即有故例2.已知。證明:設,由和,得,故。例3.求證:。證明:設
2025-06-24 20:59
【總結】不等式與不等式組測試姓名__________學號____一、選擇題(每題4分,共32分)1.不等式axb?的解集是bxa?,那么a的取值范圍是???????()A.0a?B.0a?C.0a?D.0a?2.不等式2135xx???的正整數解的個數是??
2024-11-11 04:58
【總結】不等式的證明(習題課)1、比較法(1)比較法證明不等式的步驟作差---變形---判斷符號----得出結論(2)比較法經常證明什么樣的不等式高次整式多項式、所證不等式兩邊有相同或局部相同的部分(3)作差之后變形的思維完全平方、因式積
2024-11-06 21:52