freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

冶金專業(yè)外文翻譯----鉻-鉬-_v鋼的回火脆性-wenkub

2023-05-19 15:42:08 本頁(yè)面
 

【正文】 錯(cuò)是不規(guī)則的 。微細(xì)分散的大小圓形 的 沉淀 ? 250 A的位錯(cuò)在位于網(wǎng)絡(luò)的連接處。強(qiáng)有力的碳化物含量形成 的殘留增加元素:鉻,鉬,和 釩 .,這個(gè)過(guò)程在 500600度是特別 活躍 。 Tso達(dá)到高峰時(shí)的溫度在 Fe3C的變換更穩(wěn) ,與 M7C3類似的現(xiàn)象已在鉻鋼觀察 [5]。熱 件 1Tso呈線性關(guān)系中的屈服強(qiáng)度 為 大的 變化范圍,并只有在 400600度, 特殊的 碳化物開(kāi)始制定 改變 ,有偏離線性 的 關(guān)系。 。然而,前奧氏體晶粒邊界損害并非我們的典型調(diào)查(熱 件 1 紋 裂 在 淬火 、 回火 后顯現(xiàn)出來(lái) ),沒(méi)有磷的影響,這顯然是對(duì)鉬的存在鋼鐵 中 的 解釋。沉淀 物 均勻分布在整個(gè)體積的位錯(cuò) 位置 ,低角度的板條馬氏體的界限,高角度的板條殖民地邊界,他們加強(qiáng)了矩陣和削弱(脆化)邊界。這兩種效應(yīng)導(dǎo)致韌性 、 脆性轉(zhuǎn)變溫度下降,這是 從實(shí)際 觀察 的結(jié)構(gòu) 。 2。 文獻(xiàn)引用 . M. Utevskii, Temper Brittleness of Steels [in Russian], Metallurgizdat, Moscow (1961),p. 138. 2. P. B. MikhailovMikheev, Thermal Embrittlement of Steels [in Russian], Mashgiz, MoscowLeningrad (1956), p. 56. 3. J. Hollomon, Trans. ASM, 36, 473 (1946). 4. E. Houdremont, Special Steels [Russian translation], Vol. I, Metallurgiya, Moscow (1966),p. 455. 5. V. A. Korablev, Yu. I. Ustinovshchikov, and I. G. Khatskelevich, Embrittlement of chromium steels with formation of special carbides, Metalloved. Term. Obrab. Met., No. I,16 (1975). 6. A. P. Gulyaev, I. K. Kupalova, and V. A. Landa, Method and results of phase analysis of hlghspeed steels, Zavod. Lab., No. 3, 298 (1965). 7. J. Heslop and N. Perch, Phil. Mag., ~, No. 34, 1128 (1958). 8. V. V. Rybin et al., The mechanism of hardening of sorbitehardening steel and the possibility of determining it theoretically and experimentally, in: Metal Science [inRussian], No. 17, Sudostroenie, Leningrad (1973), p. 105. 9. L. K. Gordienko, Substrucutral Hardening of Metals and Alloys [in Russian], Nauka, Moscow(1973), p. 64. 10. E. E. Glikman et al., Nature of reversible temper brittleness, Fiz. Met. Metalloved.,36, 365 (1973). 11. Oliver WC, Pharr GM (2020) J Mater Res 19:3 12. Kim JY, Lee BW, Read DT, Kwon D (2020) Scr Mater 52:353 13. Kim JY, Lee JS, Lee KW, Kim KH, Kwon D (2020) Key Eng Mater 326–328:487 14. Kim JY, Lee JJ, Lee YH, Jang JI, Kwon D (2020) J Mater Res 21:2975 15. Kim JY, Kang SK, Lee JJ, Jang JI, Lee YH, Kwon D (2020) Acta Mater 55:3555 16. Dowling NE (1993) Mechanical behavior of materials. Prentice Hall, Englewood Cliffs 17. Kim JY, Lee KW, Lee JS, Kwon D (2020) Surf Coat Technol 201:4278 18. DIN 1717579 (1979) Seamless steel tubes for elevated temperatures 19. Ahn JH, Kwon D (2020) J Mater Res 16:3170 20. Dieter GE (1988) Mechanical metallurgy. McGrawHill, Singapore 外文原文 TEMPER BRITTLENESS OF CrMo V STEEL Reversible temper brittleness (RTB) – embrittlement of steels during tempering or slow cooling in the temperature range of 500650℃ is considered to result from the formation of impurity segregates (P, Sb, Sn, As) in prior austenite grain boundaries [14]. However, there are data indicating [5] that not only these processes but other processes favoring embrittlement occur in quenched steel during tempering at 500600 176。 ) a sorbite structure. The austenite grain size of the laboratory heats was smaller (grade 89) than in the mercial heat (grade 4), with greater dispersity and homogeneity of the structural ponents. Embrittlement was determined from the variation of Tso with Ttemper , where Ttemper is the tempering temperature of the quenched steel and Tso is the ductile brittle transition temperature, which most pletely characterizes embrittlement. Tso was determined on impact test samples 5 5 mm with a notch 1 mm deep (root radius mm). Tso was taken as the testing temperature at which the fracture was 50% fibrous. The tensile strength was determined at 20 176。. For heat 1, beginning with tempering at temperatures around 300 176。 lower than for heat 1, and amounts to 70 177。). The height of the peak and its position depends on the vanadium content of the steel. When the vanadium concentration i
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1