freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

綏化市八年級數(shù)學(xué)試卷易錯易錯壓軸勾股定理選擇題精選及答案(4)-wenkub

2025-04-05 01 本頁面
 

【正文】 ,以的三邊為邊分別向外作等邊三角形,若,的面積分別是10和4,則的面積是( )A.4 B.6 C.8 D.929.如圖,在△ABC中,∠ACB=90176。AB=1,∴等腰直角三角形ABD中,BD===BC,∴Rt△BDC中,CD==2,∴DG=DC﹣GC=2﹣,∵△DEG是等腰直角三角形,∴EG=DG=2﹣,∴△EDC的面積=DCEG=2(2﹣)=2﹣.故選:C.【點睛】本題主要考查了角平分線的性質(zhì),等腰直角三角形的性質(zhì)與判定,全等三角形的判定與性質(zhì),以及勾股定理等知識,解決問題的關(guān)鍵是作輔助線,構(gòu)造直角三角形EDG進行求解.2.C解析:C【分析】如圖1或圖2所示,分類討論,利用勾股定理可得結(jié)論.【詳解】當(dāng)如圖1所示時,AB=2,BC=3,∴AC=;當(dāng)如圖2所示時,AB=1,BC=6,∴AC=;故選C.【點睛】本題主要考查圖形的拼接,數(shù)形結(jié)合,分類討論是解答此題的關(guān)鍵.3.C解析:C【分析】(1)根據(jù)角平分線的定義可得∠ABE=∠CBE,根據(jù)等角的余角相等求出∠A=∠BCA,再根據(jù)等角對等邊可得AB=BC,從而得證;(2)根據(jù)三角形的內(nèi)角和定理求出∠A=∠DFB,推出BD=DC,根據(jù)AAS證出△BDF≌△CDA即可;(3)根據(jù)等腰直角三角形斜邊上的中線等于斜邊的一半進行解答;(4)由(2)得出BF=AC,再由BF平分∠DBC和BE⊥AC通過ASA證得△ABE≌△CBE,即得CE=AE=AC,連接CG,由H是BC邊的中點和等腰直角三角形△DBC得出BG=CG,再由直角△CEG得出CG2=CE2+GE2,從而得出CE,GE,BG的關(guān)系.【詳解】解:(1)∵BE平分∠ABC,∴∠ABE=∠CBE,∵CD⊥AB,∴∠ABE+∠A=90176?!螦BE+∠DFB=90176。﹣45176?!唷螪CB=45176?!唷鰽B’B是等邊三角形,∴∠B’=∠B’AB=60176?!螦BC∠ABE=60176。E,易得陰影部分圖形的周長為=AB+BC+AC,則可求得答案.【詳解】解:因為等邊三角形ABC的邊長為1cm,所以AB=BC=AC=1cm,因為△ADE沿直線DE折疊,點A落在點A39。D+BC+A39?!啵蔬xD.【點睛】本題主要考查了勾股定理,三角形全等的判定定理和性質(zhì)定理等知識.11.B解析:B【分析】結(jié)論①錯誤,因為圖中全等的三角形有3對;結(jié)論②正確,由全等三角形的性質(zhì)可以判斷;結(jié)論③錯誤,利用全等三角形和等腰直角三角形的性質(zhì)可以判斷;結(jié)論④正確,利用全等三角形的性質(zhì)以及直角三角形的勾股定理進行判斷.【詳解】連接CF,交DE于點P,如下圖所示結(jié)論①錯誤,理由如下:圖中全等的三角形有3對,分別為△AFC≌△BFC,△AFD≌△CFE,△CFD≌△BFE.由等腰直角三角形的性質(zhì),可知FA=FC=FB,易得△AFC≌△BFC.∵FC⊥AB,F(xiàn)D⊥FE,∴∠AFD=∠CFE.∴△AFD≌△CFE(ASA).同理可證:△CFD≌△BFE.結(jié)論②正確,理由如下: ∵△AFD≌△CFE,∴S△AFD=S△CFE, ∴S四邊形CDFE=S△CFD+S△CFE=S△CFD+S△AFD=S△AFC=S△ABC,即△ABC的面積等于四邊形CDFE的面積的2倍.結(jié)論③錯誤,理由如下: ∵△AFD≌△CFE,∴CE=AD,∴CD+CE=CD+AD=AC=FA.結(jié)論④正確,理由如下: ∵△AFD≌△CFE,∴AD=CE;∵△CFD≌△BFE,∴BE=CD.在Rt△CDE中,由勾股定理得:,∴ .故選B.【點睛】本題是幾何綜合題,考查了等腰直角三角形、全等三角形和勾股定理等重要幾何知識點,綜合性比較強.解決這個問題的關(guān)鍵在于利用全等三角形的性質(zhì).12.B解析:B【分析】設(shè)小正方形的邊長為x,則矩形的一邊長為(a+x),另一邊為(b+x),根據(jù)矩形的面積的即等于兩個三角形的面積之和,也等于長乘以寬,列出方程,化簡再代入a,b的值,得出x2+7x=12,再根據(jù)矩形的面積公式,整體代入即可.【詳解】設(shè)小正方形的邊長為x,則矩形的一邊長為(a+x),另一邊為(b+x),根據(jù)題意得 :2(ax+x2+bx)=(a+x)(b+x),化簡得 :ax+x2+bxab=0,又∵ a = 3 , b = 4 ,∴x2+7x=12。52+122=132,能構(gòu)成直角三角形,故此選項不符合題意;D.AB=4cm,AC=3cm,BC=5cm,∴以AB為直徑的半圓的面積S1=2π(cm2);以AC為直徑的半圓的面積S2=π(cm2);以BC為直徑的半圓的面積S3=π(cm2);S△ABC=6(cm2);∴S陰影=S1+S2+S△ABCS3=6(cm2);故選A.【點睛】本題考查的是勾股定理,熟知在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方是解答此題的關(guān)鍵.21.B解析:B【分析】由數(shù)軸上點表示的數(shù)為,點表示的數(shù)為1,得PA=2,根據(jù)勾股定理得,進而即可得到答案.【詳解】∵數(shù)軸上點表示的數(shù)為,點表示的數(shù)為1,∴PA=2,又∵l⊥PA, ∴,∵PB=PC=,∴數(shù)軸上點所表示的數(shù)為:.故選B.【點睛】本題主要考查數(shù)軸上點表示的數(shù)與勾股定理,掌握數(shù)軸上兩點之間的距離求法,是解題的關(guān)鍵.22.A解析:A【分析】根據(jù)直角三角形的兩直角邊長分別為和,可計算出正方形的邊長,從而得出正方形的面積.【詳解】解:3和5為兩條直角邊長時,小正方形的邊長=53=2,∴小正方形的面積22=4;綜上所述:小正方形的面積為4;故答案選A.【點睛】本題考查了勾股定理及其應(yīng)用,正確表示出直角三角形的面積是解題的關(guān)鍵.23.A解析:A【分析】作于點D
點擊復(fù)制文檔內(nèi)容
合同協(xié)議相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1