freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學備考之平行四邊形壓軸突破訓練∶培優(yōu)篇及答案解析-wenkub

2025-03-30 22 本頁面
 

【正文】 ∴△DOE≌△BOF(ASA);(2)當∠DOE=90176。=54176?!嗨倪呅蜛BCD是矩形;(2)解:∵∠ADC=90176。.(1)求證:四邊形ABCD是矩形.(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度數(shù).【答案】(1)見解析;(2)18176?!郈E=CF,∴BC﹣CE=CD﹣CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,∴△AEF是等腰三角形;(2)DM、MN的數(shù)量關(guān)系是相等,DM、MN的位置關(guān)系是垂直;∵在Rt△ADF中DM是斜邊AF的中線,∴AF=2DM,∵MN是△AEF的中位線,∴AE=2MN,∵AE=AF,∴DM=MN;∵∠DMF=∠DAF+∠ADM,AM=MD,∵∠FMN=∠FAE,∠DAF=∠BAE,∴∠ADM=∠DAF=∠BAE,∴∠DMN=∠FMN+∠DMF=∠DAF+∠BAE+∠FAE=∠BAD=90176。角的直角三角板ECF和一個正方形ABCD擺放在一起,使三角板的直角頂點和正方形的頂點C重合,點E、F分別在正方形的邊CB、CD上,連接AF.取AF中點M,EF的中點N,連接MD、MN.(1)連接AE,求證:△AEF是等腰三角形;猜想與發(fā)現(xiàn):(2)在(1)的條件下,請判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;結(jié)論2:DM、MN的位置關(guān)系是 ;拓展與探究:(3)如圖2,將圖1中的直角三角板ECF繞點C順時針旋轉(zhuǎn)180176。﹣90176。+90176。在△EFM和△BPA中,∴△EFM≌△BPA(AAS). ∴EM=AP.設(shè)AP=x在Rt△APE中,(4BE)2+x2=BE2.解得BE=2+,∴CF=BEEM=2+x,∴BE+CF=x+4=(x2)2+3.當x=2時,BE+CF取最小值,∴AP=2.考點:幾何變換綜合題.2.如果兩個三角形的兩條邊對應相等,夾角互補,那么這兩個三角形叫做互補三角形,如圖2,分別以△ABC的邊AB、AC為邊向外作正方形ABDE和ACGF,則圖中的兩個三角形就是互補三角形.(1)用尺規(guī)將圖1中的△ABC分割成兩個互補三角形;(2)證明圖2中的△ABC分割成兩個互補三角形;(3)如圖3,在圖2的基礎(chǔ)上再以BC為邊向外作正方形BCHI.①已知三個正方形面積分別是1110,在如圖4的網(wǎng)格中(網(wǎng)格中每個小正方形的邊長為1)畫出邊長為、的三角形,并計算圖3中六邊形DEFGHI的面積.②若△ABC的面積為2,求以EF、DI、HG的長為邊的三角形面積.【答案】(1)作圖見解析(2)證明見解析(3)①62;②6【解析】試題分析:(1)作BC邊上的中線AD即可.(2)根據(jù)互補三角形的定義證明即可.(3)①畫出圖形后,利用割補法求面積即可.②平移△CHG到AMF,連接EM,IM,則AM=CH=BI,只要證明S△EFM=3S△ABC即可.試題解析:(1)如圖1中,作BC邊上的中線AD,△ABD和△ADC是互補三角形.(2)如圖2中,延長FA到點H,使得AH=AF,連接EH.∵四邊形ABDE,四邊形ACGF是正方形,∴AB=AE,AF=AC,∠BAE=∠CAF=90176?!唷螮PH∠EPB=∠EBC∠EBP.即∠PBC=∠BPH.又∵AD∥BC,∴∠APB=∠PBC.∴∠APB=∠BPH.(2)證明:如圖2,過B作BQ⊥PH,垂足為Q.由(1)知∠APB=∠BPH,又∵∠A=∠BQP=90176。BP=BP,在△ABP和△QBP中,∴△ABP≌△QBP(AAS),∴AP=QP,AB=BQ,又∵AB=BC,∴BC=BQ.又∠C=∠BQH=90176?!唷螮AF+∠BAC=180176。﹣x=180176。﹣x=180176。其他條件不變,則(2)中的兩個結(jié)論還成立嗎?若成立,請加以證明;若不成立,請說明理由.【答案】(1)證明參見解析;(2)相等,垂直;(3)成立,理由參見解析.【解析】試題分析:(1)根據(jù)正方形的性質(zhì)以及等腰直角三角形的知識證明出CE=CF,繼而證明出△ABE≌△ADF,得到AE=AF,從而證明出△AEF是等腰三角形;(2)DM、MN的數(shù)量關(guān)系是相等,利用三角形外角性質(zhì)和等腰三角形兩個底角相等性質(zhì),及全等三角形對應角相等即可得出結(jié)論;(3)成立,連接AE,交MD于點G,標記出各個角,首先證明出MN∥AE,MN=AE,利用三角形全等證出AE=AF,而DM=AF,從而得到DM,MN數(shù)量相等的結(jié)論,再利用三角形外角性質(zhì)和三角形全等,等腰三角形性質(zhì)以及角角之間的數(shù)量關(guān)系得到∠DMN=∠DGE=90176?!郉M⊥MN;(3)(2)中的兩個結(jié)論還成立,連接AE,交MD于點G,∵點M為AF的中點,點N為EF的中點,∴MN∥AE,MN=AE,由已知得,AB=AD=BC=CD,∠B=∠ADF,CE=CF,又∵BC+CE=CD+CF,即BE=DF,∴△ABE≌△ADF,∴AE=AF,在Rt△ADF中,∵點M為AF的中點,∴DM=AF,∴DM=MN,∵△ABE≌△ADF,∴∠1=∠2,∵AB∥DF,∴∠1=∠3,同理可證:∠2=∠4,∴∠3=∠4,∵DM=AM,∴∠MAD=∠5,∴∠DGE=∠5+∠4=∠MAD+∠3=90176。.【解析】【分析】(1)根據(jù)平行四邊形的判定得出四邊形ABCD是平行四邊形,求出∠ABC=90176。∠ADF:∠FDC=3:2,∴∠FDC=36176?!咚倪呅蜛BCD是矩形,∴OC=OD,∴∠ODC=54176。時,四邊形BFDE為菱形,理由:∵△DOE≌△BOF,∴OE=OF,又∵OB=OD,∴四邊形EBFD是平行四邊形,∵∠EOD=90176。在Rt△CEF中,sin∠FEC=,∴,∵∠FCE=∠ACB=45176?!唷螰CB+∠ACB=∠FCB+∠FCE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴ =,∴BE=AF,由(1)知,CF=EF=CD=,在Rt△BCF中,CF=,BC=2,根據(jù)勾股定理得,BF=,∴BE=BF+EF=+,由(2)知,BE=AF,∴AF=+1.即:當正方形CDEF旋轉(zhuǎn)到B,E,F(xiàn)三點共線時候,線段AF的長為﹣1或+1.7.△ABC為等邊三角形,..(1)求證:四邊形是菱形.(2)若是的角平分線,連接,找出圖中所有的等腰三角形.【答案】(1)證明見解析;(2)圖中等腰三角形有△ABC,△BDC,△ABD,△ADF,△ADC,△ADE.【解析】【分析】(1)先求證BD∥AF,證明四邊形ABDF是平行四邊形,再利用有一組鄰邊相等的平行四邊形是菱形即可證明;(2)先利用BD平分∠ABC,得到BD垂直平分線段AC,進而證明△DAC是等腰三角形,根據(jù)BD⊥AC,AF⊥AC,找到角度之間的關(guān)系,證明△DAE是等腰三角形,進而得到BC=BD=BA=AF=DF,即可解題,見詳解.【詳解】(1)如圖1中,∵∠BCD=∠BDC,∴BC=BD,∵△ABC是等邊三角形,∴AB=BC,∵AB=
點擊復制文檔內(nèi)容
合同協(xié)議相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1