freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

20xx-20xx備戰(zhàn)中考數(shù)學備考之平行四邊形壓軸突破訓練∶培優(yōu)篇及答案解析-免費閱讀

2025-03-30 22:26 上一頁面

下一頁面
  

【正文】 ∵∠CAB=90176。時,得到△BDE,如圖2所示,求過B、D兩點直線的函數(shù)關系式.③在②的條件下,旋轉過程中AC掃過的圖形的面積是多少?(3)將△ABC向右平移到△A′B′C′的位置,點C′為直線AB上的一點,請直接寫出△ABC掃過的圖形的面積.【答案】(1):5;5;(2)①(0,﹣2);②直線BD的解析式為y=﹣x+3;③S=π;(3)△ABC掃過的面積為.【解析】試題分析:(1)根據(jù)坐標軸上的點的坐標特征,結合一次函數(shù)的解析式求出A、B兩點的坐標,利用勾股定理即可解答;(2)①因為B(0,3),所以OB=3,所以AB=5,所以AO=ABBO=53=2,所以A(0,2);②過點C作CF⊥OA與點F,證明△AOB≌△CFA,得到點C的坐標,求出直線AC解析式,根據(jù)AC∥BD,所以直線BD的解析式的k值與直線AC的解析式k值相同,設出解析式,即可解答.③利用旋轉的性質進而得出A,B,C對應點位置進而得出答案,再利用以BC為半徑90176。﹣45176。∴∠PEC=∠PAB=∠PCB,∴PE=PC.(2)在點P的運動過程中,的值不改變.由△PAB≌△PCB可知,PA=PC.∵PE=PC,∴PA=PE,又∵∠APE=90176。得出∠PAE=∠PEA=45176。F中,BD39。如圖所示:過B作BF⊥AD39。=30176。分別依據(jù)旋轉的性質以及勾股定理,即可得到結論.【詳解】(1)∵AB=AD,CB=CD,∴點A在線段BD的垂直平分線上,點C在線段BD的垂直平分線上,∴AC垂直平分BD,故答案為:AC垂直平分BD;(2)四邊形FMAN是矩形.理由:如圖2,連接AF,∵Rt△ABC中,點F為斜邊BC的中點,∴AF=CF=BF,又∵等腰三角形ABD 和等腰三角形ACE,∴AD=DB,AE=CE,∴由(1)可得,DF⊥AB,EF⊥AC,又∵∠BAC=90176。時,猜想此時線段CF,AE,OE之間有怎樣的數(shù)量關系,直接寫出結論不必證明.【答案】(1)OE=OF.理由見解析;(2)補全圖形如圖所示見解析,OE=OF仍然成立;(3)CF=OE+AE或CF=OE﹣AE.【解析】【分析】(1)根據(jù)矩形的性質以及垂線,即可判定,得出OE=OF;(2)先延長EO交CF于點G,通過判定,得出OG=OE,再根據(jù)中,即可得到OE=OF;(3)根據(jù)點P在射線OA上運動,需要分兩種情況進行討論:當點P在線段OA上時,當點P在線段OA延長線上時,分別根據(jù)全等三角形的性質以及線段的和差關系進行推導計算即可.【詳解】(1)OE=OF.理由如下:如圖1.∵四邊形ABCD是矩形,∴ OA=OC.∵,∴.∵在和中,∴,∴ OE=OF;(2)補全圖形如圖2,OE=OF仍然成立.證明如下:延長EO交CF于點G.∵,∴ AE//CF,∴.又∵點O為AC的中點,∴ AO=CO.在和中,∴,∴ OG=OE,∴中,∴ OE=OF;(3)CF=OE+AE或CF=OEAE.證明如下:①如圖2,當點P在線段OA上時.∵,∴,由(2)可得:OF=OG,∴是等邊三角形,∴ FG=OF=OE,由(2)可得:,∴ CG=AE.又∵ CF=GF+CG,∴ CF=OE+AE;②如圖3,當點P在線段OA延長線上時.∵,∴,同理可得:是等邊三角形,∴ FG=OF=OE,同理可得:,∴ CG=AE.又∵ CF=GFCG,∴ CF=OEAE.【點睛】本題屬于四邊形綜合題,主要考查了矩形的性質、全等三角形的性質和判定以及等邊三角形的性質和判定,解決問題的關鍵是構建全等三角形和證明三角形全等,利用矩形的對角線互相平分得全等的邊相等的條件,根據(jù)線段的和差關系使問題得以解決.11.在中,BD為AC邊上的中線,過點C作于點E,過點A作BD的平行線,交CE的延長線于點F,在AF的延長線上截取,連接BG,DF.求證:;求證:四邊形BDFG為菱形;若,求四邊形BDFG的周長.【答案】(1)證明見解析(2)證明見解析(3)8【解析】【分析】利用平行線的性質得到,再利用直角三角形斜邊上的中線等于斜邊的一半即可得證,利用平行四邊形的判定定理判定四邊形BDFG為平行四邊形,再利用得結論即可得證,設,則,利用菱形的性質和勾股定理得到CF、AF和AC之間的關系,解出x即可.【詳解】證明:,又為AC的中點,又,證明:,四邊形BDFG為平行四邊形,又,四邊形BDFG為菱形,解:設,則,在中,解得:,舍去,菱形BDFG的周長為8.【點睛】本題考查了菱形的判定與性質直角三角形斜邊上的中線,勾股定理等知識,正確掌握這些定義性質及判定并結合圖形作答是解決本題的關鍵.12.(問題發(fā)現(xiàn))(1)如圖(1)四邊形ABCD中,若AB=AD,CB=CD,則線段BD,AC的位置關系為  ??;(拓展探究)(2)如圖(2)在Rt△ABC中,點F為斜邊BC的中點,分別以AB,AC為底邊,在Rt△ABC外部作等腰三角形ABD和等腰三角形ACE,連接FD,F(xiàn)E,分別交AB,AC于點M,N.試猜想四邊形FMAN的形狀,并說明理由;(解決問題)(3)如圖(3)在正方形ABCD中,AB=2,以點A為旋轉中心將正方形ABCD旋轉60176。根據(jù)三角形面積公式求出即可;②求出高CQ,求出△A′DC的面積.即可求出△ABC的面積.試題解析:(1)∵四邊形ABCD是矩形,∴AD∥BC,∵AE=BF,∴四邊形ABFE是平行四邊形,∴OE=OB,∴△AOE和△AOB是友好三角形.(2)∵△AOE和△DOE是友好三角形,∴S△AOE=S△DOE,AE=ED=AD=3,∵△AOB與△AOE是友好三角形,∴S△AOB=S△AOE,∵△AOE≌△FOB,∴S△AOE=S△FOB,∴S△AOD=S△ABF,∴S四邊形CDOF=S矩形ABCD2S△ABF=46243=12.探究:解:分為兩種情況:①如圖1,∵S△ACD=S△BCD.∴AD=BD=AB,∵沿CD折疊A和A′重合,∴AD=A′D=AB=4=2,∵△A′CD與△ABC重合部分的面積等于△ABC面積的,∴S△DOC=S△ABC=S△BDC=S△ADC=S△A′DC,∴DO=OB,A′O=CO,∴四邊形A′DCB是平行四邊形,∴BC=A′D=2,過B作BM⊥AC于M,∵AB=4,∠BAC=30176。∴∠FCE﹣∠ACE=∠ACB﹣∠ACE,∴∠FCA=∠ECB,∴△ACF∽△BCE,∴ =,∴BE=AF,∴線段BE與AF的數(shù)量關系無變化;(3)當點E在線段AF上時,如圖2,由(1)知,CF=EF=CD=,在Rt△BCF中,CF=,BC=2,根據(jù)勾股定理得,BF=,∴BE=BF﹣EF=﹣,由(2)知,BE=AF,∴AF=﹣1,當點E在線段BF的延長線上時,如圖3,在Rt△ABC中,AB=AC=2,∴∠ABC=∠ACB=
點擊復制文檔內容
合同協(xié)議相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1