freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

大數(shù)據(jù)時代培訓(xùn)課件(已修改)

2024-10-25 13:56 本頁面
 

【正文】 大數(shù)據(jù)時代,班級:電信111,大數(shù)據(jù)簡介,數(shù)據(jù)正在迅速膨脹并變大,它決定著企業(yè)的未來發(fā)展,雖然很多企業(yè)可能并沒有意識到數(shù)據(jù)爆炸性增長帶來問題的隱患,但是隨著時間的推移,人們將越來越多的意識到數(shù)據(jù)對企業(yè)的重要性。 哈佛大學(xué)社會學(xué)教授加里金說:“這是一場革命,龐大的數(shù)據(jù)資源使得各個領(lǐng)域開始了量化進(jìn)程,無論學(xué)術(shù)界、商界還是政府,所有領(lǐng)域都將開始這種進(jìn)程?!?大數(shù)據(jù)簡介,隨著云時代的來臨,大數(shù)據(jù)(Big data)也吸引了越來越多的關(guān)注。大數(shù)據(jù)分析常和云計算聯(lián)系到一起,因為實時的大型數(shù)據(jù)集分析需要像MapReduce(分布式計算)一樣的框架來向數(shù)十、數(shù)百或甚至數(shù)千的電腦分配工作。 大數(shù)據(jù)到底有多大?一組名為“互聯(lián)網(wǎng)上一天”的數(shù)據(jù)告訴我們,一天之中,互聯(lián)網(wǎng)產(chǎn)生的全部內(nèi)容可以刻滿1.68億張DVD;發(fā)出的郵件有2940億封之多(相當(dāng)于美國兩年的紙質(zhì)信件數(shù)量);發(fā)出的社區(qū)帖子達(dá)200萬個(相當(dāng)于《時代》雜志770年的文字量);賣出的手機(jī)為37.8萬臺…… 這樣的趨勢會持續(xù)下去。我們現(xiàn)在還處于所謂“物聯(lián)網(wǎng)”的最初級階段,而隨著技術(shù)成熟,我們的設(shè)備、交通工具和迅速發(fā)展的“可穿戴”科技將能互相連接與溝通??萍嫉倪M(jìn)步已經(jīng)使創(chuàng)造、捕捉和管理信息的成本降至2005年的六分之一,而從2005年起,用在硬件、軟件、人才及服務(wù)之上的商業(yè)投資也增長了整整50%,達(dá)到了4000億美元。,四個特征,數(shù)據(jù)量大(Volume) 第一個特征是數(shù)據(jù)量大。大數(shù)據(jù)的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。 類型繁多(Variety) 第二個特征是數(shù)據(jù)類型繁多。包括網(wǎng)絡(luò)日志、音頻、視頻、圖片、地理位置信息等等,多類型的數(shù)據(jù)對數(shù)據(jù)的處理能力提出了更高的要求。 價值密度低(Value) 第三個特征是數(shù)據(jù)價值密度相對較低。如隨著物聯(lián)網(wǎng)的廣泛應(yīng)用,信息感知無處不在,信息海量,但價值密度較低,如何通過強(qiáng)大的機(jī)器算法更迅速地完成數(shù)據(jù)的價值“提純”,是大數(shù)據(jù)時代亟待解決的難題。 速度快時效高(Velocity) 第四個特征是處理速度快,時效性要求高。這是大數(shù)據(jù)區(qū)分于傳統(tǒng)數(shù)據(jù)挖掘最顯著的特征。,大數(shù)據(jù)分析與處理方法介紹,眾所周知,大數(shù)據(jù)已經(jīng)不簡簡單單是數(shù)據(jù)大的事實了,而最重要的現(xiàn)實是對大數(shù)據(jù)進(jìn)行分析,只有通過分析才能獲取很多智能的,深入的,有價值的信息。那么越來越多的應(yīng)用涉及到大數(shù)據(jù),而這些大數(shù)據(jù)的屬性,包括數(shù)量,速度,多樣性等等都是呈現(xiàn)了大數(shù)據(jù)不斷增長的復(fù)雜性,所以大數(shù)據(jù)的分析方法在大數(shù)據(jù)領(lǐng)域就顯得尤為重要,可以說是決定最終信息是否有價值的決定性因素。,大數(shù)據(jù)分析的五個基本方面,1. Analytic Visualizations(可視化分析) 不管是對數(shù)據(jù)分析專家還是普通用戶,數(shù)據(jù)可視化是數(shù)據(jù)分析工具最基本的要求??梢暬梢灾庇^的展示數(shù)據(jù),讓數(shù)據(jù)自己說話,讓觀眾聽到結(jié)果。 2. Data Mining Algorithms(數(shù)據(jù)挖掘算法) 可視化是給人看的,數(shù)據(jù)挖掘就是給機(jī)器看的。集群、分割、孤立點分析還有其他的算法讓我們深入數(shù)據(jù)內(nèi)部,挖掘價值。這些算法不僅要處理大數(shù)據(jù)的量,也要處理大數(shù)據(jù)的速度。 3. Predictive Analytic Capabilities(預(yù)測性分析能力) 數(shù)據(jù)挖掘可以讓分析員更好的理解數(shù)據(jù),而預(yù)測性分析可以讓分析員根據(jù)可視化分析和數(shù)據(jù)挖掘的結(jié)果做出一些預(yù)測性的判斷。,大數(shù)據(jù)分析的五個
點擊復(fù)制文檔內(nèi)容
電大資料相關(guān)推薦
文庫吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號-1