【正文】
石河子大學(xué) 信息科學(xué)與技術(shù)學(xué)院畢業(yè)論文 課題名稱: 基于 機器視覺的棉花葉面蚜蟲計數(shù)算法研究 學(xué)生姓名: 潘偉 學(xué) 號: 20xx508175 學(xué) 院: 信息科學(xué)與技術(shù)學(xué)院 專業(yè)年級: 電子信息工程 20xx 級( 1)班 指導(dǎo)教師: 查志華 職 稱: 講師 完成日期: 二 ○ 一 五 年六月三日 摘要 I 基于機器視覺的棉花葉面蚜蟲計數(shù)算法研究 學(xué)生 :潘偉 指導(dǎo)老師 :查志華 [摘要 ] 作物上害蟲種群密度和危害程度是害蟲防治決策的重要依據(jù),也是精確噴藥的關(guān)鍵信息。與人工測蟲方法相比,使用計算機視覺來自動獲取害蟲信息,不僅可降低勞動強度、提高工作效率,而且便于與后續(xù)的防治決策和精確施藥實現(xiàn)技術(shù)對接和技術(shù)集成。當(dāng)前,害蟲檢測和計數(shù)的主要困難之一還是小蟲體的檢測和計數(shù)。就小蟲體的計算機視覺檢測和計數(shù)而言,也存在著因蟲體幾何尺寸小而導(dǎo)致圖像處理的困難。其一,在同樣的成像設(shè)備和成像條件下,小蟲體的成像質(zhì)量一般比大蟲體要差,這對小蟲體圖像特征提取、處理和檢測都有一些新要求。其二,小蟲體構(gòu)成的蟲群圖像粘 連很嚴(yán)重,這對自動化快速準(zhǔn)確計數(shù)帶來了困難。為此,本文以棉花葉面蚜蟲為對象,研究基于圖像信息的蚜蟲檢測和計數(shù)方法。 [關(guān)鍵詞 ] 蚜蟲 ,圖像處理 ,kmeans 聚類算法 ,閾值分割 ,腐蝕重建 ,計數(shù)Abstract II Study on the counting algorithm of cotton leaf aphids based on machine vision Students: Pan Wei Teacher: ZhaZhihua Abstract: Crop pest population density and harmful levels are important criteria for pest control, decision making, and the key information for precise spraying. Compared with manual measurement insects, using puter vision to automatically obtain the pest information, not only can reduce labor intensity, improve efficiency, and easier to control and decision— making with precise spraying realize technology docking and integration. Currently, one of the main difficulties for the pest detection and counting is small worm detection and counting. In terms of the puter vision on a small worm detection and counting, the small worm also exist the difficulty of image processing what be caused by small geometry. First, in the same imaging equipment and imaging conditions, image quality of small worm is worse than large worm generally, this brings new request to small worm that image feature extraction,processing and detection. Second, The image overlapping of insect group which constitute with the small worm is very serious, this brings difficult to automation, rapid and accurate counting. So this paper targeted to the cotton leaf aphids, research on the image detection and counting methods for aphids based on the image information. Key words : Aphids, Image processing, Kmeans clustering algorithm, Threshold segmentation, Reconstruction of corrosion, Counting 目錄 III 目 錄第一章 緒論 .......................................................... 1 引言 ............................................................ 1 國內(nèi)外研究現(xiàn)狀 .................................................. 1 機器視覺法 .................................................. 1 光譜分析法 .................................................. 2 分水嶺算法在去粘連方面的研究現(xiàn)狀 ............................ 2 本文的研究內(nèi)容和技術(shù)路線 ........................................ 3 研究內(nèi)容 .................................................... 3 技術(shù)路線 .................................................... 4 第二章 棉花葉面蚜蟲的圖像獲取 ........................................ 5 試驗系統(tǒng)組成 .................................................... 5 試驗軟件系統(tǒng) ................................................ 5 棉花葉面蚜蟲的采集 .............................................. 5 蚜蟲圖像采集 ................................................ 5 第三章 蚜蟲區(qū)域的提取 ................................................ 7 HSV 顏色空間模型 ................................................ 7 從 RGB 到 HSV 的轉(zhuǎn)換及其實現(xiàn) .................................. 7 圖像分割概述 .................................................... 8 基于聚類分析的圖像分割方法 .................................. 9 K 均值聚類分割算法的工作原理 ............................... 10 Kmeans 聚類算法的一般步驟及處理流程 ....................... 10 kmeans 聚類閾值分割的后處理 ................................... 10 灰度化處理 ................................................. 10 形態(tài)學(xué)濾波 ..................................................... 11 實驗結(jié)果分析 .................................................. 14 第四章 棉花葉面蚜蟲圖像的計數(shù) ....................................... 15 連通區(qū)域標(biāo)記法計數(shù) ............................................. 15 目錄 IV 像素間的連通性 ............................................. 15 連通區(qū)域標(biāo)記法 ............................................. 16 連通區(qū)域標(biāo)記法計數(shù)結(jié)果 ..................................... 17 第五章 結(jié)論與展望 ................................................... 19 結(jié)論 ........................................................... 19 展望 ........................................................... 19 致謝 ................................................................ 21 參考文獻 ....................................................