【總結(jié)】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)課后訓(xùn)練北師大版必修4"1.過點A(2,3),且垂直于向量a=(2,1)的直線方程為().A.2x+y-7=0B.2x+y+7=0C.x-2y+4=0D.x-2y-4=02.△ABC中,AB邊的高為CD,若CB
2024-11-30 23:41
【總結(jié)】2.平面向量的坐標(biāo)運算情景:我們知道,在直角坐標(biāo)平面內(nèi),每一個點都可用一對有序?qū)崝?shù)(即它的坐標(biāo))表示,如點A(x,y)等.思考:對于每一個向量如何表示?若知道平面向量的坐標(biāo),應(yīng)如何進(jìn)行運算?1.兩個向量和的坐標(biāo)等于________________________________.即若a=(x1,y1),b
2024-12-05 10:15
【總結(jié)】1空間向量運算的坐標(biāo)表示北師大版高中數(shù)學(xué)選修2-1第二章《空間向量與立體幾何》法門高中姚連省制作2一、向量的直角坐標(biāo)運算則設(shè)),,(),,,(321321bbbbaaaa??;??ab;??ab;??a;??ab//;.??ab;??ab112233(,,)???a
2024-11-17 15:04
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量數(shù)量積的坐標(biāo)表示、模、夾角課時跟蹤檢測新人教A版必修4考查知識點及角度難易度及題號基礎(chǔ)中檔稍難向量數(shù)量積的運算1、412與模有關(guān)的問題2、59、10向量的夾角與垂直問題3、67、8、111.設(shè)向量a=(1,0),b=??
2024-12-09 03:41
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量數(shù)量積的坐標(biāo)表示、模、夾角學(xué)業(yè)達(dá)標(biāo)測試新人教A版必修41.若向量a=(3,m),b=(2,-1),a·b=0,則實數(shù)m的值為()A.-32C.2D.6解析:a·b=3×2+m×(-1)=6-m=0
【總結(jié)】第一頁,編輯于星期六:點三十三分。,2.4平面向量的數(shù)量積2.4.2平面向量數(shù)量積的坐標(biāo)表示、模、夾角,第二頁,編輯于星期六:點三十三分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三...
2024-10-22 18:49
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量的正交分解及坐標(biāo)表示平面向量的坐標(biāo)運算學(xué)業(yè)達(dá)標(biāo)測試新人教A版必修41.下列說法正確的有()①向量的坐標(biāo)即此向量終點的坐標(biāo).②位置不同的向量其坐標(biāo)可能相同.③一個向量的坐標(biāo)等于它的終點坐標(biāo)減去它的始點坐標(biāo).④相等的向量坐標(biāo)一定相同.A.1個B.2個
2024-12-09 03:42
【總結(jié)】1、平面向量的坐標(biāo)表示與平面向量分解定理的關(guān)系。2、平面向量的坐標(biāo)是如何定義的?3、平面向量的運算有何特點?類似地,由平面向量的分解定理,對于平面上的任意向量,均可以分解為不共線的兩個向量和使得a→11λa→22λa→=a
2024-11-11 21:09
【總結(jié)】§2.平面向量的坐標(biāo)運算【學(xué)習(xí)目標(biāo)、細(xì)解考綱】1、會用坐標(biāo)表示平面向量的加法、減與數(shù)乘運算。2、培養(yǎng)細(xì)心、耐心的學(xué)習(xí)習(xí)慣,提高分析問題的能力?!局R梳理、雙基再現(xiàn)】1、兩個向量和差的坐標(biāo)運算已知:??1122(,),(,)axybxx,?為一實數(shù)則?????122
2024-12-02 08:37
【總結(jié)】平面向量共線的坐標(biāo)表示學(xué)習(xí)目標(biāo):1.理解用坐標(biāo)表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標(biāo),判斷向量是否共線.3.掌握三點共線的判斷方法.【學(xué)法指導(dǎo)】1.應(yīng)用平面向量共線條件的坐標(biāo)表示來解決向量的共線問題優(yōu)點在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個數(shù),而且使問題具有代數(shù)化的特點、程序
2024-11-19 20:38
【總結(jié)】陜西省榆林育才中學(xué)高中數(shù)學(xué)第2章《平面向量》7平面向量的坐標(biāo)(2)導(dǎo)學(xué)案北師大版必修4使用說明1.課前根據(jù)學(xué)習(xí)目標(biāo),認(rèn)真閱讀課本內(nèi)容,完成預(yù)習(xí)引導(dǎo)的全部內(nèi)容.,課堂上積極討論,大膽展示,完成合作探究部分.學(xué)習(xí)目標(biāo)1.理解用坐標(biāo)表示的平面向量共線的條件.2.會根據(jù)向量的坐標(biāo),判斷向量是否平行.學(xué)習(xí)重點
2024-11-19 23:19
【總結(jié)】【金榜教程】2021年高中數(shù)學(xué)平面向量基本定理檢測試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)O是△ABC所在平面內(nèi)一點,D為BC邊中點,且2OAOBOC0???,那么()(A)AOOD?(B)AO2OD?(C)AO3OD?(D)2A
2024-12-03 03:14
【總結(jié)】復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2平面向量基本定理:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.
2024-11-17 17:33
【總結(jié)】a?Ab?BCba???a?a?Ab?Bb?OCba???特點:首尾相接特點:共起點bBaABAab??:O特點:共起點:::向量與非零向量共線當(dāng)且僅當(dāng)有唯一一個實數(shù),使得ab
2024-11-17 19:47