【總結(jié)】第三章第2課時對數(shù)函數(shù)的應用一、選擇題1.已知函數(shù)f(x)=lg1-x1+x,若f(a)=12,則f(-a)等于()A.12B.-12C.2D.-2[答案]B[解析]f(a)=lg1-a1+a=12,f(-a)=lg(1-a1+a)-1=-lg
2024-11-27 23:55
【總結(jié)】雙基達標?限時20分鐘?1.函數(shù)f(x)=x3+3x的奇偶性為().A.奇函數(shù)B.偶函數(shù)C.既是奇函數(shù)又是偶函數(shù)D.非奇非偶函數(shù)解析定義域為R,且f(-x)=-x3-3x=-f(x),∴為奇函數(shù).答案A2.已知定義在R上的偶函數(shù)f(x)在x>0上是增函
2024-12-09 03:38
【總結(jié)】f(x)=x2,求f(-2),f(2),f(-1),f(1),及f(-x),并畫出它的圖象。解:f(-2)=(-2)2=4f(2)=4f(-1)=(-1)2=1f(1)=1f(-x)=(-x)2=x2f(-2)=f(2)f(-1)=f(1)f(-x)=f(x)-xxf(-x)f(x)xy
2025-08-16 01:30
【總結(jié)】課題:§教學目的:(1)理解函數(shù)的奇偶性及其幾何意義;(2)學會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì);(3)學會判斷函數(shù)的奇偶性.教學重點:函數(shù)的奇偶性及其幾何意義.教學難點:判斷函數(shù)的奇偶性的方法與格式.教學過程:一、引入課題1.實踐操作:(也可借助計算機演示)取一張紙,在其上畫出
2024-11-28 15:50
【總結(jié)】第一篇:2015年高中數(shù)學新人教A版必修1(精選) (教學設計) 教學目的:(1)理解函數(shù)的奇偶性及其幾何意義; (2)學會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì);(3)學會判斷函數(shù)的奇偶性. 教學...
2024-11-09 12:44
【總結(jié)】第二章第2課時分段函數(shù)一、選擇題1.(2021~2021學年度四川德陽五中高一上學期月考)函數(shù)f(x)=?????x2xx-x,則f[f(-4)]的值為()A.15B.16C.-5D.-15[答案]A[解析]f(-4)=(-4)2=16,
2024-11-28 01:20
【總結(jié)】函數(shù)的奇偶性教學設計,情景導入情景1:生活中,哪些幾何圖形體現(xiàn)著對稱美?情景2:我們學過的函數(shù)圖象中有沒有體現(xiàn)著對稱的美呢?情景3:引導學生從對稱角度將所說的函數(shù)圖象進行分類比較。,合作探究問題1:根據(jù)函數(shù)的解析式,結(jié)合函數(shù)的圖像通過求值觀察并總結(jié)出規(guī)律。(設計這個問題有這樣的目的:通過直觀圖像幫助學生更好的找出規(guī)律一是
2024-12-09 07:17
【總結(jié)】第3課時奇偶性的概念課時目標,了解函數(shù)奇偶性的含義;;.1.函數(shù)奇偶性的概念一般地,設函數(shù)y=f(x)的定義域為A.(1)如果對于任意的x∈A,都有__________,那么稱函數(shù)y=f(x)是偶函數(shù);(2)如果對于任意的x∈A,都有__________,那么稱函數(shù)y=f(x)是奇函數(shù).
2024-11-27 23:28
【總結(jié)】第二章函數(shù)(奇偶性)1.已知函數(shù)f(x)=ax2+bx+c(a≠0)是偶函數(shù),那么g(x)=ax3+bx2+cx( ) A.奇函數(shù) B.偶函數(shù) C.既奇又偶函數(shù) D.非奇非偶函數(shù)2.已知函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),且其定義域為[a-1,2a],則( ?。 .,b=0 B.a(chǎn)=-1,b=0 C.a(chǎn)=1,b=0 D.
2025-04-04 05:11
【總結(jié)】第二章§5第1課時簡單的冪函數(shù)一、選擇題1.下列函數(shù)在(-∞,0)上為減函數(shù)的是()A.y=x13B.y=x3C.y=x2D.y=x-2[答案]C[解析]函數(shù)y=x13和y=x-2我們不太熟悉,但對于y=x2的圖像與性質(zhì),我們記憶深刻,并
2024-11-28 01:11
【總結(jié)】函數(shù)的奇偶性素材觀察下圖,思考并討論以下問題:(1)這兩個函數(shù)圖象有什么共同特征嗎?(2)相應的兩個函數(shù)值對應表是如何體現(xiàn)這些特征的?f(-3)=9=f(3)f(-2)=4=f(2)f(-1)=1=f(1)f(-3)=3=f(3)f(-2)=2=f(2)f(-1)=1=f(1)f(x)=x2f(x)=|x|
2024-11-17 06:23
【總結(jié)】§(4)正弦函數(shù)的周期性、奇偶性、對稱性(課前預習案)班級:___姓名:________編寫:一、新知導學1、周期函數(shù)的定義:對于函數(shù)f(x),如果存在一個________,使得定義域內(nèi)的_______,都滿足____________,那么函數(shù)f(x)就叫做___________,_____叫做這個
2024-11-18 16:46
【總結(jié)】奇偶性班級:__________姓名:__________設計人__________日期__________課后練習【基礎過關(guān)】1.設在[-2,-1]上為減函數(shù),最小值為3,且為偶函數(shù),則在[1,2]上,最大值為3,最小值為-3,最大值為-3,最小值為32.已知函數(shù)是偶函數(shù),其圖象與軸有四個交點,則方
【總結(jié)】第三章函數(shù)的應用(Ⅱ)一、選擇題1.某工廠第三年的產(chǎn)量比第一年的產(chǎn)量增長44%,若每年的平均增長率相同(設為x),則下列結(jié)論中正確的是()A.x22%B.x22%C.x=22%D.x的大小由第一年產(chǎn)量確定[答案]B[解析]由題意設第一年產(chǎn)量為a,則第三年產(chǎn)量為a(1+44%
【總結(jié)】第一章第1課時交集與并集一、選擇題1.(2021~2021學年度北京市豐臺二中高一上學期期中測試)已知集合A={x|x2-2x=0},B={0,1,2},則A∩B=()A.{0}B.{0,1}C.{0,2}D.{0,1,2}[答案]C[解析]A={x|x2-2x
2024-11-28 00:02